A COMPARATIVE STUDY OF FAIRNESS IN MEDICAL MACHINE LEARNING

被引:3
作者
Oguguo, Tochi [1 ,2 ]
Zamzmi, Ghada [1 ]
Rajaraman, Sivaramakrishnan [1 ]
Yang, Feng [1 ]
Xue, Zhiyun [1 ]
Antani, Sameer [1 ]
机构
[1] NIH, Computat Hlth Res Branch, Natl Lib Med, Bldg 10, Bethesda, MD 20892 USA
[2] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA
来源
2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI | 2023年
关键词
Medical machine learning; Responsible machine learning; fairness; medical image analysis; BIAS;
D O I
10.1109/ISBI53787.2023.10230368
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although the applications of machine learning (ML) are revolutionizing medicine, current algorithms are not resilient against bias. Fairness in ML can be defined as measuring the potential bias in algorithms with respect to characteristics such as race, gender, and age. In this paper, we perform a comparative study to detect the bias caused by imbalanced group representation in medical datasets. We investigate bias in medical imaging tasks for the following dataset: chest X-ray dataset (CXR lung segmentation) and Stanford Diverse Dermatology Image (DDI) dataset (skin cancer prediction). Our results show differences in the performance of the state-of-the-arts across different groups. To mitigate this performance disparity, we explored different bias mitigation approaches and demonstrated that integrating these approaches into ML models can improve fairness without degrading the overall performance.
引用
收藏
页数:5
相关论文
共 19 条
[1]   Machine learning in clinical decision making [J].
Adlung, Lorenz ;
Cohen, Yotam ;
Mor, Uria ;
Elinav, Eran .
MED, 2021, 2 (06) :642-665
[2]   Fairness in Machine Learning for Healthcare [J].
Ahmad, Muhammad Aurangzeb ;
Patel, Arpit ;
Eckert, Carly ;
Kumar, Vikas ;
Teredesai, Ankur .
KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, :3529-3530
[3]   Machine Learning in Dermatology: Current Applications, Opportunities, and Limitations [J].
Chan, Stephanie ;
Reddy, Vidhatha ;
Myers, Bridget ;
Thibodeaux, Quinn ;
Brownstone, Nicholas ;
Liao, Wilson .
DERMATOLOGY AND THERAPY, 2020, 10 (03) :365-386
[4]   Current Applications and Future Impact of Machine Learning in Radiology [J].
Choy, Garry ;
Khalilzadeh, Omid ;
Michalski, Mark ;
Do, Synho ;
Samir, Anthony E. ;
Pianykh, Oleg S. ;
Geis, J. Raymond ;
Pandharipande, Pari V. ;
Brink, James A. ;
Dreyer, Keith J. .
RADIOLOGY, 2018, 288 (02) :318-328
[5]  
Daneshjou R, 2021, arXiv
[6]   Disparities in dermatology AI performance on a diverse, curated clinical image set [J].
Daneshjou, Roxana ;
Vodrahalli, Kailas ;
Novoa, Roberto A. ;
Jenkins, Melissa ;
Liang, Weixin ;
Rotemberg, Veronica ;
Ko, Justin ;
Swetter, Susan M. ;
Bailey, Elizabeth E. ;
Gevaert, Olivier ;
Mukherjee, Pritam ;
Phung, Michelle ;
Yekrang, Kiana ;
Fong, Bradley ;
Sahasrabudhe, Rachna ;
Allerup, Johan A. C. ;
Okata-Karigane, Utako ;
Zou, James ;
Chiou, Albert S. .
SCIENCE ADVANCES, 2022, 8 (32)
[7]   Potential Biases in Machine Learning Algorithms Using Electronic Health Record Data [J].
Gianfrancesco, Milena A. ;
Tamang, Suzanne ;
Yazdany, Jinoos ;
Schmajuk, Gabriela .
JAMA INTERNAL MEDICINE, 2018, 178 (11) :1544-1547
[8]  
Gichoya J.W, 2022, The Lancet Digital Health
[9]   Two public chest X-ray datasets for computer-aided screening of pulmonary diseases [J].
Jaeger, Stefan ;
Candemir, Sema ;
Antani, Sameer ;
Wang, Yi-Xiang J. ;
Lu, Pu-Xuan ;
Thoma, George .
QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2014, 4 (06) :475-477
[10]   Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis [J].
Larrazabal, Agostina J. ;
Nieto, Nicolas ;
Peterson, Victoria ;
Milone, Diego H. ;
Ferrante, Enzo .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (23) :12592-12594