A Mixed-Signal Short-Term Plasticity Implementation for a Current-Controlled Memristive Synapse

被引:4
作者
Chakraborty, Nishith N. [1 ]
Das, Hritom [1 ]
Rose, Garrett S. [1 ]
机构
[1] Univ Tennessee, Knoxville, TN 37996 USA
来源
PROCEEDINGS OF THE GREAT LAKES SYMPOSIUM ON VLSI 2023, GLSVLSI 2023 | 2023年
关键词
Neuromorphic; short-term plasticity; memristor; current-controlled synapse; facilitation; depression;
D O I
10.1145/3583781.3590283
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Short-term plasticity (STP) is a synaptic modification process found in biological synapses that increases the computational power of the neuronal network. To implement plasticity rules, we use a memristor-based synapse due to its inherent plasticity. The synapse is designed to operate in the low resistance state (LRS) region using a current-controlled mechanism to account for the device non-idealities encountered at the high resistance state (HRS). In this work, we implement a mixed-signal STP circuit for this synapse design. The STP circuit uses a digital part to generate pulses to initiate the weight change, and an analog part to update the programming voltage. The STP functionality is verified using a 65 nm CMOS process, and the performance metrics are reported. Results show that our circuit achieves a great performance in terms of area and power consumption.
引用
收藏
页码:179 / 182
页数:4
相关论文
共 10 条
  • [1] Towards Synaptic Behavior of Nanoscale ReRAM Devices for Neuromorphic Computing Applications
    Beckmann, Karsten
    Olin-Ammentorp, Wilkie
    Chakma, Gangotree
    Amer, Sherif
    Rose, Garrett S.
    Hobbs, Chris
    Van Nostrand, Joseph
    Rodgers, Martin
    Cady, Nathaniel C.
    [J]. ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2020, 16 (02)
  • [2] Programmable Refractory Period Implementations in a Mixed-Signal Integrate-And-Fire Neuron
    Chakraborty, Nishith N.
    Rose, Garrett S.
    [J]. 2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022,
  • [3] Analog VLSI circuits for short-term dynamic synapses
    Liu, SC
    [J]. EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2003, 2003 (07) : 620 - 628
  • [4] Implementation of Neuro-Memristive Synapse for Long-and Short-Term Bio-Synaptic Plasticity
    Mannan, Zubaer I.
    Kim, Hyongsuk
    Chua, Leon
    [J]. SENSORS, 2021, 21 (02) : 1 - 16
  • [5] Mitra S., 2006, 2006 IEEE International Symposium on Circuits and Systems (IEEE Cat. No. 06CH37717C)
  • [6] Switched-capacitor realization of presynaptic short-term-plasticity and stop-learning synapses in 28 nm CMOS
    Noack, Marko
    Partzsch, Johannes
    Mayr, Christian G.
    Haenzsche, Stefan
    Scholze, Stefan
    Hoeppner, Sebastian
    Ellguth, Georg
    Schueffny, Rene
    [J]. FRONTIERS IN NEUROSCIENCE, 2015, 9
  • [7] Short-term plasticity circuit device exploration in the MASTISK neuromorphic framework
    Parmar, Vivek
    Kingra, Sandeep Kaur
    Suri, Manan
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (45)
  • [8] Analog weight updates with compliance current modulation of binary ReRAMs for on-chip learning
    Payvand, Melika
    Demirag, Yigit
    Dalgaty, Thomas
    Vianello, Elisa
    Indiveri, Giacomo
    [J]. 2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [9] STDP Based Online Learning for a Current-Controlled Memristive Synapse
    Weiss, Ryan
    Das, Hritom
    Chakraborty, Nishith N.
    Rose, Garrett S.
    [J]. 2022 IEEE 65TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS 2022), 2022,
  • [10] Xu Peng, 2008, ADV NEURAL INFORM PR, V21