Carbon-Coated Porous Hollow Silicon Microspheres for High-Capacity and Durable Lithium Storage

被引:0
作者
Yang, Yumei [1 ]
He, Ruhan [1 ]
Zhuang, Dingyue [1 ]
Chen, Ran [1 ]
Li, Qi [2 ]
Mai, Liqiang [1 ,3 ,4 ]
Zhou, Liang [1 ,3 ,4 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Luoshi Rd 122, Wuhan 430070, Peoples R China
[2] Adv Energy Sci & Technol Guangdong Lab, Foshan Xianhu Lab, Foshan 528216, Peoples R China
[3] Wuhan Univ Technol, Hubei Longzhong Lab, Xiangyang 441000, Hubei, Peoples R China
[4] Wuhan Univ Technol, Hainan Inst, Sanya 572000, Peoples R China
基金
海南省自然科学基金;
关键词
anode material; carbon coating; chemical vapor deposition; lithium-ion battery; porous hollow silicon; AL-SI ALLOY; SHELL; COMPOSITE; ANODES; LAYER; NANOPARTICLES; NANOWIRES; POWDER;
D O I
10.1002/cnma.202300265
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Silicon-based materials are promising lithium-ion battery (LIB) anodes owing to their natural abundance and high capacity. However, their practical application is restricted by the poor electrical conductivity and large volume expansion. Herein, we successfully construct carbon coated porous hollow silicon microspheres (Si-40@C) as LIB anode materials, which are derived from the acid etching of commercial AlSi alloy with subsequent chemical vapor deposition carbon coating. The porous hollow structure of Si-40@C buffers the volume variation and promotes the transportation of Li+; the carbon coating enhances the overall conductivity as well as structural stability. The as-prepared Si-40@C porous hollow microspheres deliver a high reversible capacity (2029 mAh g(-1) at 0.2 A g(-1)), good cyclability (1668 mAh g(-1) after 100 cycles at 0.2 A g(-1)), and an ideal rate capability (1200 mAh g(-1) at 10 A g(-1)).
引用
收藏
页数:6
相关论文
共 50 条
[1]   Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes [J].
An, Weili ;
Gao, Biao ;
Mei, Shixiong ;
Xiang, Ben ;
Fu, Jijiang ;
Wang, Lei ;
Zhang, Qiaobao ;
Chu, Paul K. ;
Huo, Kaifu .
NATURE COMMUNICATIONS, 2019, 10 (1)
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Mg2SiO4/Si-Coated Disproportionated SiO Composite Anodes with High Initial Coulombic Efficiency for Lithium Ion Batteries [J].
Bian, Cancan ;
Fu, Rusheng ;
Shi, Zhepu ;
Ji, Jingjing ;
Zhang, Jun ;
Chen, Wen ;
Zhou, Xufeng ;
Shi, Siqi ;
Liu, Zhaoping .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (13) :15337-15345
[4]   Self-standing silicon-carbon nanotube/graphene by a scalable in situ approach from low-cost Al-Si alloy powder for lithium ion batteries [J].
Cai, Hongyan ;
Han, Kai ;
Jiang, Heng ;
Wang, Jingwen ;
Liu, Hui .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2017, 109 :9-17
[5]   The Boundary of Lithium Plating in Graphite Electrode for Safe Lithium-Ion Batteries [J].
Cai, Wenlong ;
Yan, Chong ;
Yao, Yu-Xing ;
Xu, Lei ;
Chen, Xiao-Ru ;
Huang, Jia-Qi ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (23) :13007-13012
[6]  
Cao W., 2019, ELECTROCHIM ACTA, V320
[7]   Electrolyte Design Enabling a High-Safety and High-Performance Si Anode with a Tailored Electrode-Electrolyte Interphase [J].
Cao, Zhang ;
Zheng, Xueying ;
Qu, Qunting ;
Huang, Yunhui ;
Zheng, Honghe .
ADVANCED MATERIALS, 2021, 33 (38)
[8]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[9]   Porous Si Nanowires from Cheap Metallurgical Silicon Stabilized by a Surface Oxide Layer for Lithium Ion Batteries [J].
Chen, Yu ;
Liu, Lifeng ;
Xiong, Jie ;
Yang, Tingzhou ;
Qin, Yong ;
Yan, Chenglin .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (43) :6701-6709
[10]   An interconnected and scalable hollow Si-C nanospheres/graphite composite for high-performance lithium-ion batteries [J].
Gao, Jiafeng ;
Zuo, Songlin ;
Liu, He ;
Jiang, Qiwen ;
Wang, Chenhao ;
Yin, Huanhuan ;
Wang, Ziqi ;
Wang, Jie .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 624 :555-563