Instant formation of nanopores on flexible polymer membranes using intense pulsed light and nanoparticle templates

被引:4
作者
Ren, Miaoning [1 ]
Li, Tianyu [1 ]
Huo, Wenxing [1 ]
Guo, Yu [1 ]
Xia, Zhiqiang [1 ]
Li, Ya [1 ]
Niu, Jing [1 ]
Onses, M. Serdar [2 ]
Huang, Xian [1 ,3 ]
机构
[1] Tianjin Univ, Dept Biomed Engn, Tianjin, Peoples R China
[2] Erciyes Univ, ERNAM Nanotechnol Res & Applicat Ctr, Dept Mat Sci & Engn, Kayseri, Turkiye
[3] Tianjin Univ, Dept Biomed Engn, 92 Weijin Rd, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid-state nanopore; intense pulsed light; polymer; AgNPs; flexible membrane; ATOMIC LAYER DEPOSITION; FABRICATION; PLATFORM; GRAPHENE;
D O I
10.1080/19475411.2023.2227129
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The development of simple and high-throughput approaches to yield solid-state nanopores on large surface membranes may facilitate the prevalence of nanopore analysis technology and in-vitro diagnosis using portable devices. However, solid-state nanopores are typically realized by complex and high-end nanofabrication equipments. Here, we present a method to achieve nanopores on polymer membranes using silver nanoparticles (AgNPs) as templates and intense pulsed light (IPL) as a heating source. The density and size of nanopores are controllable by adjusting the spin coating rate, the concentration of nanoparticle suspension, and the size of nanoparticles (NPs). The temperature of the AgNPs can rapidly reach 1132 K under instant heating of photothermal effect through light irradiation in 2 ms, resulting in localized melting and decomposition of an underneath polycarbonate (PC) membrane to yield nanopores with sizes ranging from 10 to 270 nm. After removing the nanoparticle residues, the flexible membrane with nanopores can be integrated into a flow cell to achieve a nanopore sensor that has been used to measure the translocation behaviors of bovine serum albumin (BSA). The results have demonstrated the capability of the sensor in protein denaturation identification. This low-cost and high-throughput technique to fabricate solid-state nanopores on flexible polymeric membranes may facilitate the development of more nanopore-based flexible sensors that can be integrated with other flexible components for wearable diagnosis.
引用
收藏
页码:391 / 405
页数:15
相关论文
共 56 条
[1]   Tailoring Thermoplastic In-Plane Nanopore Size by Thermal Fusion Bonding for the Analysis of Single Molecules [J].
Athapattu, Uditha S. ;
Rathnayaka, Chathurika ;
Vaidyanathan, Swarnagowri ;
Gamage, Sachindra S. T. ;
Choi, Junseo ;
Riahipour, Ramin ;
Manoharan, Anishkumar ;
Hall, Adam R. ;
Park, Sunggook ;
Soper, Steven A. .
ACS SENSORS, 2021, 6 (08) :3133-3143
[2]   Thermo-plasmonics: using metallic nanostructures as nano-sources of heat [J].
Baffou, Guillaume ;
Quidant, Romain .
LASER & PHOTONICS REVIEWS, 2013, 7 (02) :171-187
[3]   Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat [J].
Bandodkar, Amay J. ;
Gutruf, Philipp ;
Choi, Jungil ;
Lee, KunHyuck ;
Sekine, Yurina ;
Reeder, Jonathan T. ;
Jeang, William J. ;
Aranyosi, Alexander J. ;
Lee, Stephen P. ;
Model, Jeffrey B. ;
Ghaffari, Roozbeh ;
Su, Chun-Ju ;
Leshock, John P. ;
Ray, Tyler ;
Verrillo, Anthony ;
Thomas, Kyle ;
Krishnamurthi, Vaishnavi ;
Han, Seungyong ;
Kim, Jeonghyun ;
Krishnan, Siddharth ;
Hang, Tao ;
Rogers, John A. .
SCIENCE ADVANCES, 2019, 5 (01)
[4]   Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring [J].
Bandodkar, Amay J. ;
Molinnus, Denise ;
Mirza, Omar ;
Guinovart, Tomas ;
Windmiller, Joshua R. ;
Valdes-Ramirez, Gabriela ;
Andrade, Francisco J. ;
Schoening, Michael J. ;
Wang, Joseph .
BIOSENSORS & BIOELECTRONICS, 2014, 54 :603-609
[5]   DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels [J].
Chang, H ;
Kosari, F ;
Andreadakis, G ;
Alam, MA ;
Vasmatzis, G ;
Bashir, R .
NANO LETTERS, 2004, 4 (08) :1551-1556
[6]   Plasmonic Nanostructures for Photothermal Conversion [J].
Chen, Jinxing ;
Ye, Zuyang ;
Yang, Fan ;
Yin, Yadong .
SMALL SCIENCE, 2021, 1 (02)
[7]   Construction of a flexible electrochemiluminescence platform for sweat detection [J].
Chen, Miao-Miao ;
Cheng, Shi-Bo ;
Ji, Kailun ;
Gao, Jingwen ;
Liu, Yan-Ling ;
Wen, Wei ;
Zhang, Xiuhua ;
Wang, Shengfu ;
Huang, Wei-Hua .
CHEMICAL SCIENCE, 2019, 10 (25) :6295-6303
[8]   Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores [J].
Chen, P ;
Mitsui, T ;
Farmer, DB ;
Golovchenko, J ;
Gordon, RG ;
Branton, D .
NANO LETTERS, 2004, 4 (07) :1333-1337
[9]   Scalable fabrication of sub-10 nm polymer nanopores for DNA analysis [J].
Choi, Junseo ;
Lee, Charles C. ;
Park, Sunggook .
MICROSYSTEMS & NANOENGINEERING, 2019, 5
[10]   Lifetime and Stability of Silicon Nitride Nanopores and Nanopore Arrays for Ionic Measurements [J].
Chou, Yung-Chien ;
Das, Paul Masih ;
Monos, Dimitri S. ;
Drndic, Marija .
ACS NANO, 2020, 14 (06) :6715-6728