Expression quantitative trait locus studies in the era of single-cell omics

被引:4
作者
Luo, Jie [1 ]
Wu, Xinyi [2 ]
Cheng, Yuan [2 ]
Chen, Guang [1 ]
Wang, Jian [1 ]
Song, Xijiao [1 ]
机构
[1] Zhejiang Acad Agr Sci, State Key Lab Managing Biot & Chem Threats Qual &, Hangzhou, Peoples R China
[2] Zhejiang Acad Agr Sci, Inst Vegetables, Hangzhou, Peoples R China
关键词
sc-eQTL; cell-type-specific; genetic variants; scRNA-seq; bulk RNA-seq; GENE-EXPRESSION; ANALYSIS REVEALS; VISUALIZATION; DECONVOLUTION; DISCOVERY; DISEASE; RISK;
D O I
10.3389/fgene.2023.1182579
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genome-wide association studies have revealed that the regulation of gene expression bridges genetic variants and complex phenotypes. Profiling of the bulk transcriptome coupled with linkage analysis (expression quantitative trait locus (eQTL) mapping) has advanced our understanding of the relationship between genetic variants and gene regulation in the context of complex phenotypes. However, bulk transcriptomics has inherited limitations as the regulation of gene expression tends to be cell-type-specific. The advent of single-cell RNA-seq technology now enables the identification of the cell-type-specific regulation of gene expression through a single-cell eQTL (sc-eQTL). In this review, we first provide an overview of sc-eQTL studies, including data processing and the mapping procedure of the sc-eQTL. We then discuss the benefits and limitations of sc-eQTL analyses. Finally, we present an overview of the current and future applications of sc-eQTL discoveries.
引用
收藏
页数:11
相关论文
共 105 条
[21]   Regularization Paths for Generalized Linear Models via Coordinate Descent [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Rob .
JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01) :1-22
[22]   SAFEGUI: resampling-based tests of categorical significance in gene expression data made easy [J].
Gatti, Daniel M. ;
Sypa, Myroslav ;
Rusyn, Ivan ;
Wright, Fred A. ;
Barry, William T. .
BIOINFORMATICS, 2009, 25 (04) :541-542
[23]   CellMix: a comprehensive toolbox for gene expression deconvolution [J].
Gaujoux, Renaud ;
Seoighe, Cathal .
BIOINFORMATICS, 2013, 29 (17) :2211-2212
[24]  
Gewirtz AD, 2022, bioRxiv, DOI [10.1101/2022.08.14.503915, 10.1101/2022.08.14.503915, DOI 10.1101/2022.08.14.503915]
[25]   DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data [J].
Gong, Ting ;
Szustakowski, Joseph D. .
BIOINFORMATICS, 2013, 29 (08) :1083-1085
[26]   Single-cell messenger RNA sequencing reveals rare intestinal cell types [J].
Grun, Dominic ;
Lyubimova, Anna ;
Kester, Lennart ;
Wiebrands, Kay ;
Basak, Onur ;
Sasaki, Nobuo ;
Clevers, Hans ;
van Oudenaarden, Alexander .
NATURE, 2015, 525 (7568) :251-+
[27]   Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds [J].
Guerrero-Juarez, Christian F. ;
Dedhia, Priya H. ;
Jin, Suoqin ;
Ruiz-Vega, Rolando ;
Ma, Dennis ;
Liu, Yuchen ;
Yamaga, Kosuke ;
Shestova, Olga ;
Gay, Denise L. ;
Yang, Zaixin ;
Kessenbrock, Kai ;
Nie, Qing ;
Pear, Warren S. ;
Cotsarelis, George ;
Plikus, Maksim V. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[28]   SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis [J].
Guo, Minzhe ;
Wang, Hui ;
Potter, S. Steven ;
Whitsett, Jeffrey A. ;
Xu, Yan .
PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (11)
[29]   Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors [J].
Haghverdi, Laleh ;
Lun, Aaron T. L. ;
Morgan, Michael D. ;
Marioni, John C. .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :421-+
[30]   Integrated analysis of multimodal single-cell data [J].
Hao, Yuhan ;
Hao, Stephanie ;
Andersen-Nissen, Erica ;
Mauck, William M. I. I. I. I. I. I. ;
Zheng, Shiwei ;
Butler, Andrew ;
Lee, Maddie J. ;
Wilk, Aaron J. ;
Darby, Charlotte ;
Zager, Michael ;
Hoffman, Paul ;
Stoeckius, Marlon ;
Papalexi, Efthymia ;
Mimitou, Eleni P. ;
Jain, Jaison ;
Srivastava, Avi ;
Stuart, Tim ;
Fleming, Lamar M. ;
Yeung, Bertrand ;
Rogers, Angela J. ;
McElrath, Juliana M. ;
Blish, Catherine A. ;
Gottardo, Raphael ;
Smibert, Peter ;
Satija, Rahul .
CELL, 2021, 184 (13) :3573-+