Clinical Validation of an Artificial Intelligence Model for Detecting Distal Radius, Ulnar Styloid, and Scaphoid Fractures on Conventional Wrist Radiographs

被引:14
作者
Lee, Kyu-Chong [1 ]
Choi, In Cheul [2 ]
Kang, Chang Ho [1 ]
Ahn, Kyung-Sik [1 ]
Yoon, Heewon [1 ]
Lee, Jae-Joon [3 ]
Kim, Baek Hyun [4 ]
Shim, Euddeum [4 ]
机构
[1] Korea Univ Ansan Hosp, Dept Radiol, Seoul 02841, South Korea
[2] Korea Univ Ansan Hosp, Dept Orthoped Surg, Seoul 02841, South Korea
[3] Crescom Inc, Seongnam 13493, South Korea
[4] Korea Univ Ansan Hosp, Dept Radiol, Ansan 15355, South Korea
关键词
artificial intelligence; convolutional neural network; distal radius fracture; ulnar styloid fracture; scaphoid fracture; FAT STRIPE; DIAGNOSIS; PAR;
D O I
10.3390/diagnostics13091657
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
This study aimed to assess the feasibility and performance of an artificial intelligence (AI) model for detecting three common wrist fractures: distal radius, ulnar styloid process, and scaphoid. The AI model was trained with a dataset of 4432 images containing both fractured and non-fractured wrist images. In total, 593 subjects were included in the clinical test. Two human experts independently diagnosed and labeled the fracture sites using bounding boxes to build the ground truth. Two novice radiologists also performed the same task, both with and without model assistance. The sensitivity, specificity, accuracy, and area under the curve (AUC) were calculated for each wrist location. The AUC for detecting distal radius, ulnar styloid, and scaphoid fractures per wrist were 0.903 (95% C.I. 0.887-0.918), 0.925 (95% C.I. 0.911-0.939), and 0.808 (95% C.I. 0.748-0.967), respectively. When assisted by the AI model, the scaphoid fracture AUC of the two novice radiologists significantly increased from 0.75 (95% C.I. 0.66-0.83) to 0.85 (95% C.I. 0.77-0.93) and from 0.71 (95% C.I. 0.62-0.80) to 0.80 (95% C.I. 0.71-0.88), respectively. Overall, the developed AI model was found to be reliable for detecting wrist fractures, particularly for scaphoid fractures, which are commonly missed.
引用
收藏
页数:11
相关论文
共 26 条
[1]  
ANDERSEN JL, 1988, ACTA RADIOL, V29, P97
[2]   Scaphoid and pronator fat stripes are unreliable soft tissue signs in the detection of radiographically occult fractures [J].
Annamalai, G ;
Raby, N .
CLINICAL RADIOLOGY, 2003, 58 (10) :798-800
[3]   Abnormal scaphoid fat pad: is it a reliable sign of fracture scaphoid [J].
Banerjee, B ;
Nashi, M .
INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 1999, 30 (03) :191-194
[4]  
Burns JE, 2020, J BONE MINER RES, V35, P28, DOI 10.1002/jbmr.3849
[5]   Adult Scaphoid Fracture [J].
Carpenter, Christopher R. ;
Pines, Jesse M. ;
Schuur, Jeremiah D. ;
Muir, Meaghan ;
Calfee, Ryan P. ;
Raja, Ali S. .
ACADEMIC EMERGENCY MEDICINE, 2014, 21 (02) :101-121
[6]   THE DIAGNOSTIC-VALUE OF DISPLACEMENT OF THE FAT STRIPE IN FRACTURE OF THE SCAPHOID BONE [J].
CETTI, R ;
CHRISTENSEN, SE .
HAND, 1982, 14 (01) :75-79
[7]   Fractures of the Carpal Bones [J].
Christie, Brian M. ;
Michelotti, Brett F. .
CLINICS IN PLASTIC SURGERY, 2019, 46 (03) :469-+
[8]   Artificial intelligence vs. radiologist: accuracy of wrist fracture detection on radiographs [J].
Cohen, Mathieu ;
Puntonet, Julien ;
Sanchez, Julien ;
Kierszbaum, Elliott ;
Crema, Michel ;
Soyer, Philippe ;
Dion, Elisabeth .
EUROPEAN RADIOLOGY, 2023, 33 (06) :3974-3983
[9]   Global trends of hand and wrist trauma: a systematic analysis of fracture and digit amputation using the Global Burden of Disease 2017 Study [J].
Crowe, Christopher Stephen ;
Massenburg, Benjamin Ballard ;
Morrison, Shane Douglas ;
Chang, James ;
Friedrich, Jeffrey Barton ;
Abady, Gdiom Gebreheat ;
Alahdab, Fares ;
Alipour, Vahid ;
Arabloo, Jalal ;
Asaad, Malke ;
Banach, Maciej ;
Bijani, Ali ;
Borzi, Antonio Maria ;
Briko, Nikolay Ivanovich ;
Castle, Chris D. ;
Cho, Daniel Youngwhan ;
Chung, Michael T. ;
Daryani, Ahmad ;
Demoz, Gebre Teklemariam ;
Dingels, Zachary, V ;
Hoa Thi Do ;
Fischer, Florian ;
Fox, Jack T. ;
Fukumoto, Takeshi ;
Gebre, Abadi Kahsu ;
Gebremichael, Berhe ;
Haagsma, Juanita A. ;
Haj-Mirzaian, Arvin ;
Handiso, Demelash Woldeyohannes ;
Hay, Simon, I ;
Chi Linh Hoang ;
Irvani, Seyed Sina Naghibi ;
Jozwiak, Jacek Jerzy ;
Kalhor, Rohollah ;
Kasaeian, Amir ;
Khader, Yousef Saleh ;
Khalilov, Rovshan ;
Khan, Ejaz Ahmad ;
Khundkar, Roba ;
Kisa, Sezer ;
Kisa, Adnan ;
Liu, Zichen ;
Majdan, Marek ;
Manafi, Navid ;
Manafi, Ali ;
Manda, Ana-Laura ;
Meretoja, Tuomo J. ;
Miller, Ted R. ;
Mohammadian-Hafshejani, Abdollah ;
Mohammadpourhodki, Reza .
INJURY PREVENTION, 2020, 26 (SUPP_1) :115-124
[10]  
Dias J J, 1987, J Orthop Trauma, V1, P205, DOI 10.1097/00005131-198701030-00002