Unique continuation on convex domains

被引:1
作者
McCurdy, Sean [1 ]
机构
[1] Univ Washington, Dept Math, Box 354350, C-138 Padelford, Seattle, WA 98195 USA
关键词
  Boundary unique continuation; unique continuation; Cauchy problem; harmonic functions; convex domains; quantitative stratification; CRITICAL SETS; REGULARITY; BOUNDARY;
D O I
10.4171/RMI/1389
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain estimates on the quantitative strata of the critical set of non-trivial harmonic functions u which vanish continuously on V C 8 center dot, a rel-atively open subset of the boundary of a convex domain center dot C 18n. In particular, these estimates improve dimensional estimates on {IVuI = 0} both in V C 8 center dot and as it approaches V n center dot. These estimates are not obtainable by naively combining inte-rior and boundary estimates, and represent a significant improvement upon existing results for boundary analytic continuation in the convex case.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 24 条
[1]  
Adolfsson V, 1997, COMMUN PUR APPL MATH, V50, P935, DOI 10.1002/(SICI)1097-0312(199710)50:10<935::AID-CPA1>3.0.CO
[2]  
2-H
[3]  
Adolfsson V, 1995, REV MAT IBEROAM, V11, P513
[4]   ON THE STRUCTURE OF SINGULAR SETS OF CONVEX-FUNCTIONS [J].
ALBERTI, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (01) :17-27
[5]   The stability for the Cauchy problem for elliptic equations [J].
Alessandrini, Giovanni ;
Rondi, Luca ;
Rosset, Edi ;
Vessella, Sergio .
INVERSE PROBLEMS, 2009, 25 (12)
[6]  
Almgren F. J., 1979, MINIMAL SUBMANIFOLDS, P1
[7]  
[Anonymous], 1991, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems
[8]  
Bourgain J., 1990, Colloq. Math., V60, P253, DOI [10.4064/cm-60-61-1-253-260, DOI 10.4064/CM-60-61-1-253-260]
[9]   Critical Sets of Elliptic Equations [J].
Cheeger, Jeff ;
Naber, Aaron ;
Valtorta, Daniele .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (02) :173-209
[10]   Quantitative stratification and the regularity of harmonic maps and minimal currents [J].
Cheeger, Jeff ;
Naber, Aaron .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (06) :965-990