E-Cigarette Vapour Alters High-Fat Diet-Induced Systemic Inflammatory Responses but Has No Effect on High-Fat Diet-Induced Changes in Gut Microbiota

被引:1
|
作者
Chen, Hui [1 ]
Burke, Catherine [1 ]
Donovan, Chantal [1 ,2 ]
Faiz, Alen [1 ]
Saad, Sonia [1 ,3 ]
Oliver, Brian G. [1 ,4 ]
机构
[1] Univ Technol Sydney, Fac Sci, Sch Life Sci, Sydney, NSW 2007, Australia
[2] Univ Newcastle, Hunter Med Res Inst, Callaghan, NSW 2308, Australia
[3] Univ Sydney, Kolling Inst Med Res, Renal Grp, St Leonards, NSW 2064, Australia
[4] Macquarie Univ, Woolcock Inst Med Res, Resp Cellular & Mol Biol, Glebe, NSW 2037, Australia
基金
英国医学研究理事会;
关键词
e-cigarettes; e-vapour; high-fat diet; microbiome; gut microbiota; lipids; OBESITY;
D O I
10.3390/nu15071783
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Background: The gut microbiome, which can be altered by different diets or smoking, has been implicated in the pathogenesis of lung conditions. E-cigarette vaping is now recognised to have detrimental health effects, with several of these being similar to cigarette smoking. However, whether e-cigarettes can alter high-fat diet (HFD)-induced systemic effects and gut microbiota is unknown. In this study, we investigated the effects of HFD in the absence/presence of e-cigarette exposure on systemic inflammation, lipid metabolic markers, and the gut microbiome. Methods: Mice were fed a HFD (or chow) in the absence/presence of e-vapour exposure (+/- nicotine) and serum inflammation, lipid levels, and microbial diversity were assessed. Results: HFD increased the circulating levels of both triglycerides and non-esterified fatty acids, which were significantly reduced by e-vapour exposure in HFD-fed mice. Serum TNF-a was increased by HFD consumption or e-vapour. HFD had a significant effect on microbial diversity, but there were no additional effects of e-vapour exposure. Conclusions: This study highlights both similarities and differences in how the body responds to e-cigarette vapours, and it is therefore likely that the long-term sequelae of e-cigarette vapour exposure/vaping might not involve the significant alteration of the gut microbiome.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Modulation of fat metabolism and gut microbiota by resveratrol on high-fat diet-induced obese mice
    Campbell, C. Linda
    Yu, Renqiang
    Li, Fengzhi
    Zhou, Qin
    Chen, Daozhen
    Qi, Ce
    Yin, Yongxiang
    Sun, Jin
    DIABETES METABOLIC SYNDROME AND OBESITY-TARGETS AND THERAPY, 2019, 12 : 97 - 107
  • [2] HIGH-FAT DIET-INDUCED GUT MICROBIOTA DYSBIOSIS PROMOTE INTESTINAL CARCINOGENESIS
    Guo, Zixuan
    Liu, Tianyu
    Jiang, Kui
    Wang, Bangmao
    Cao, Hailong
    GASTROENTEROLOGY, 2019, 156 (06) : S685 - S685
  • [3] Codium fragileAmeliorates High-Fat Diet-Induced Metabolism by Modulating the Gut Microbiota in Mice
    Kim, Jungman
    Choi, Jae Ho
    Oh, Taehwan
    Ahn, Byungjae
    Unno, Tatsuya
    NUTRIENTS, 2020, 12 (06) : 1 - 15
  • [4] Fucoidan alleviates dyslipidemia and modulates gut microbiota in high-fat diet-induced mice
    Liu, Min
    Ma, Lin
    Chen, Qichao
    Zhang, Pengyu
    Chen, Chao
    Jia, Lilin
    Li, Huajun
    JOURNAL OF FUNCTIONAL FOODS, 2018, 48 : 220 - 227
  • [5] High-Fat Diet-Induced Retinal Dysfunction
    Chang, Richard Cheng-An
    Shi, Liheng
    Huang, Cathy Chia-Yu
    Kim, Andy Jeesu
    Ko, Michael L.
    Zhou, Beiyan
    Ko, Gladys Y. -P.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2015, 56 (04) : 2367 - 2380
  • [6] Fenofibrate Ameliorated Systemic and Retinal Inflammation and Modulated Gut Microbiota in High-Fat Diet-Induced Mice
    Wang, Xue
    Yu, Chaofeng
    Liu, Xiaomei
    Yang, Jiasong
    Feng, Yuliang
    Wu, Yajun
    Xu, Yali
    Zhu, Yihua
    Li, Wensheng
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2022, 12
  • [7] Propionate alleviates high-fat diet-induced lipid dysmetabolism by modulating gut microbiota in mice
    Song, B.
    Zhong, Y. Z.
    Zheng, C. B.
    Li, F. N.
    Duan, Y. H.
    Deng, J. P.
    JOURNAL OF APPLIED MICROBIOLOGY, 2019, 127 (05) : 1546 - 1555
  • [8] Effect of age on high-fat diet-induced hypertension
    Erdos, Benedek
    Kirichenko, Nataliya
    Whidden, Melissa
    Basgut, Bilgen
    Woods, Mary
    Cudykier, Idan
    Tawil, Rabih
    Scarpace, Philip J.
    Tumer, Nihal
    AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2011, 301 (01): : H164 - H172
  • [9] Compositional Changes of the High-Fat Diet-Induced Gut Microbiota upon Consumption of Common Pulses
    Lutsiv, Tymofiy
    Weir, Tiffany L.
    McGinley, John N.
    Neil, Elizabeth S.
    Wei, Yuren
    Thompson, Henry J.
    NUTRIENTS, 2021, 13 (11)
  • [10] Suppression of High-Fat Diet-Induced Obesity by Platycodon Grandiflorus in Mice Is Linked to Changes in the Gut Microbiota
    Ke, Weixin
    Bonilla-Rosso, German
    Engel, Philipp
    Wang, Pan
    Chen, Fang
    Hu, Xiaosong
    JOURNAL OF NUTRITION, 2020, 150 (09): : 2364 - 2374