Self-healing properties of augmented injectable hydrogels over time

被引:1
|
作者
Castro, Connor [1 ]
Brown, Zachary R. [2 ]
Brewer, Erik [1 ,2 ]
机构
[1] Rowan Univ, Dept Biomed Engn, Glassboro, NJ 08028 USA
[2] ReGelTec Inc, Baltimore, MD 21201 USA
关键词
hydrogel; self-healing; injectable hydrogel; PVA; color analysis; multiple injections; augmented injections; TOUGH;
D O I
10.3934/matersci.2023016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Injectable polymers offer great benefits compared to other types of implants; however, they tend to suffer from increased mechanical wear and may need a replacement implant to restore these mechanical properties. The purpose of this experiment is to investigate an injectable hydrogel's self-healing ability to augment itself to a previously molded implant. This was accomplished by performing a tensile strength test to examine potential diminishing mechanical properties with increasing time, as well as dye penetration tests to examine the formation of interfacial bonds between healed areas of hydrogels. There were several time points in between injections that were explored, from 0 min between injections all the way up to 48 h in between injections. The tests showed no statistical differences of the increased injection times compared to the single injection for the tensile test. However, our results showed an increase of mechanical breaks at self-healed joints, as well as a linear regression test showed a decrease in dye diffusion rate as time between injections increase. These results show that the hydrogel has strong self-healing abilities, and as time between injections increase, they mechanical properties will slowly decrease. Based on this, the tests can be applied to other injectable implants and a noninvasive solution to a worn-down implant, as well as show scientific backing to a possibly unique and beneficial self-healing property.
引用
收藏
页码:301 / 312
页数:12
相关论文
共 50 条
  • [1] Self-healing and injectable polysaccharide hydrogels with tunable mechanical properties
    Hongchen Liu
    Chaojing Li
    Bijia Wang
    Xiaofeng Sui
    Lu Wang
    Xiaolin Yan
    Hong Xu
    Linping Zhang
    Yi Zhong
    Zhiping Mao
    Cellulose, 2018, 25 : 559 - 571
  • [2] Self-healing and injectable polysaccharide hydrogels with tunable mechanical properties
    Liu, Hongchen
    Li, Chaojing
    Wang, Bijia
    Sui, Xiaofeng
    Wang, Lu
    Yan, Xiaolin
    Xu, Hong
    Zhang, Linping
    Zhong, Yi
    Mao, Zhiping
    CELLULOSE, 2018, 25 (01) : 559 - 571
  • [3] Self-Healing Injectable Hydrogels for Tissue Regeneration
    Bertsch, Pascal
    Diba, Mani
    Mooney, David J.
    Leeuwenburgh, Sander C. G.
    CHEMICAL REVIEWS, 2023, 123 (02) : 834 - 873
  • [4] Injectable and fast self-healing protein hydrogels
    Zhang, Xin
    Jiang, Shangtong
    Yan, Tengfei
    Fan, Xiaotong
    Li, Fei
    Yang, Xiaodong
    Ren, Bo
    Xu, Jiayun
    Liu, Junqiu
    SOFT MATTER, 2019, 15 (38) : 7583 - 7589
  • [5] Advances in injectable self-healing biomedical hydrogels
    Tu, Yujie
    Chen, Nuan
    Li, Chuping
    Liu, Haiqian
    Zhu, Rong
    Chen, Shengfeng
    Xiao, Qiao
    Liu, Jianghui
    Ramakrishna, Seeram
    He, Liumin
    ACTA BIOMATERIALIA, 2019, 90 : 1 - 20
  • [6] Nonswellable injectable hydrogels with shear-thinning and self-healing properties
    Becher, Tiago
    Bertuzzi, Diego
    Ornelas, Catia
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [7] Chitosan-based hydrogels with injectable, self-healing and antibacterial properties for wound healing
    Deng, Pengpeng
    Yao, Lichao
    Chen, Juanjuan
    Tang, Zhigang
    Zhou, Jinping
    CARBOHYDRATE POLYMERS, 2022, 276
  • [8] Injectable, self-healing mesoporous silica nanocomposite hydrogels with improved mechanical properties
    Zengin, A.
    Castro, J. P. O.
    Habibovic, P.
    van Rijt, S. H.
    NANOSCALE, 2021, 13 (02) : 1144 - 1154
  • [9] INJECTABLE, SELF-HEALING MESOPOROUS SILICA NANOCOMPOSITE HYDROGELS WITH IMPROVED MECHANICAL PROPERTIES
    Zengin, Aygul
    Castro, Joao Pedro Olim
    Habibovic, Pamela
    van Rijt, Sabine
    TISSUE ENGINEERING PART A, 2022, 28 : S234 - S234
  • [10] Self-healing hydrogels as injectable implants: Advances in translational wound healing
    Khattak, Saadullah
    Ullah, Ihsan
    Xie, Hailin
    Tao, Xu-Dong
    Xu, Hong -Tao
    Shen, Jianliang
    COORDINATION CHEMISTRY REVIEWS, 2024, 509