Randomly r-orthogonal factorizations in bipartite graphs

被引:0
作者
Yuan, Yuan [1 ,2 ]
Hao, Rong-Xia [2 ]
机构
[1] Hainan Univ, Sch Sci, Haikou 570228, Peoples R China
[2] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
基金
海南省自然科学基金; 中国国家自然科学基金;
关键词
Bipartite graph; (g; f)-Factor; Randomly r-orthogonal factorization; (G; F)-FACTORIZATIONS; CONSTRAINTS;
D O I
10.1007/s00010-022-00927-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph with vertex set V(G) and edge set E(G), and let f be an integer-valued function defined on V(G). It is proved in this paper that every bipartite (0, mf - m + 1)-graph has a (0, f)-factorization randomly r-orthogonal to n vertex-disjoint mr-subgraphs of G, which is a generalization of the known result with n = 1 given by Zhou and Wu.
引用
收藏
页码:511 / 522
页数:12
相关论文
共 14 条
[1]   FACTORS AND FACTORIZATIONS OF GRAPHS - A SURVEY [J].
AKIYAMA, J ;
KANO, M .
JOURNAL OF GRAPH THEORY, 1985, 9 (01) :1-42
[2]  
Alspach B., 1992, CONT DESIGN THEORY A
[3]   Orthogonal factorizations of graphs [J].
Feng, HD ;
Liu, GZ .
JOURNAL OF GRAPH THEORY, 2002, 40 (04) :267-276
[4]   Orthogonal factorizations of graphs [J].
Li, GJ ;
Chen, CP ;
Yu, G .
DISCRETE MATHEMATICS, 2002, 245 (1-3) :173-194
[5]   (g,f)-factorizations orthogonal to a subgraph in graphs [J].
Li, GJ ;
Liu, GZ .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (03) :267-272
[6]   Some problems on factorizations with constraints in bipartite graphs [J].
Liu, GZ ;
Zhu, BH .
DISCRETE APPLIED MATHEMATICS, 2003, 128 (2-3) :421-434
[7]   ORTHOGONAL (G,F)-FACTORIZATIONS IN GRAPHS [J].
LIU, GZ .
DISCRETE MATHEMATICS, 1995, 143 (1-3) :153-158
[8]   Subgraphs with orthogonal factorizations and algorithms Changping Wang [J].
Wang, Changping .
EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (07) :1706-1713
[9]   Discussions on Orthogonal Factorizations in Digraphs [J].
Zhou, Si-zhong ;
Liu, Hong-xia .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (02) :417-425
[10]   Subgraphs with orthogonal factorizations in graphs [J].
Zhou, Sizhong ;
Zhang, Tao ;
Xu, Zurun .
DISCRETE APPLIED MATHEMATICS, 2020, 286 (286) :29-34