Clinical value of automated volumetric quantification of early ischemic tissue changes on non-contrast CT

被引:2
作者
Brugnara, Gianluca [1 ,2 ]
Mihalicz, Peter [1 ]
Herweh, Christian [1 ]
Schonenberger, Silvia [3 ]
Purrucker, Jan [4 ]
Nagel, Simon [4 ,5 ]
Ringleb, Peter Arthur [4 ]
Bendszus, Martin [1 ]
Mohlenbruch, Markus A. [1 ]
Neuberger, Ulf [1 ,6 ]
机构
[1] Univ Hosp Heidelberg, Dept Neuroradiol, D-69120 Heidelberg, Germany
[2] Univ Hosp Heidelberg, Sect Computat Neuroimaging, Heidelberg, Germany
[3] Heidelberg Univ, Neurol, Heidelberg, Germany
[4] Univ Hosp Heidelberg, Neurol, Heidelberg, Baden Wurttembe, Germany
[5] Stadt Klinikum Ludwigshafen, Dept Neurol, Ludwigshafen, Germany
[6] Heidelberg Univ Hosp, Sect Computat Neuroimaging, Heidelberg, Germany
关键词
CT; Stroke; Thrombectomy; COMPUTED-TOMOGRAPHY SCORE; NONCONTRAST CT; ACUTE STROKE; THROMBECTOMY; RELIABILITY; ANGIOGRAPHY; GUIDELINES; IMPACT;
D O I
10.1136/jnis-2022-019400
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Background Quantitative and automated volumetric evaluation of early ischemic changes on non-contrast CT (NCCT) has recently been proposed as a new tool to improve prognostic performance in patients undergoing endovascular therapy (EVT) for acute ischemic stroke (AIS). We aimed to test its clinical value compared with the Alberta Stroke Program Early CT Score (ASPECTS) in a large single-institutional patient cohort. Methods A total of 1103 patients with AIS due to large vessel occlusion in the M1 or proximal M2 segments who underwent NCCT and EVT between January 2013 and November 2019 were retrospectively enrolled. Acute ischemic volumes (AIV) and ASPECTS were generated from the baseline NCCT through e-ASPECTS (Brainomix). Correlations were tested using Spearman's coefficient. The predictive capabilities of AIV for a favorable outcome (modified Rankin Scale score at 90 days <= 2) were tested using multivariable logistic regression as well as machine-learning models. Performance of the models was assessed using receiver operating characteristic (ROC) curves and differences were tested using DeLong's test. Results Patients with a favorable outcome had a significantly lower AIV (median 12.0 mL (IQR 5.7-21.7) vs 18.8 mL (IQR 9.4-33.9), p<0.001). AIV was highly correlated with ASPECTS (rho=0.78, p<0.001) and weakly correlated with the National Institutes of Health Stroke Scale score at baseline (rho=0.22, p<0.001), and was an independent predictor of an unfavorable clinical outcome (adjusted OR 0.97, 95% CI 0.96 to 0.98). No significant difference was found between machine-learning models using either AIV or ASPECTS or both metrics for predicting a good clinical outcome (p>0.05). Conclusion AIV is an independent predictor of clinical outcome and presented a non-inferior performance compared with ASPECTS, without clear advantages for prognostic modelling.
引用
收藏
页码:E178 / E183
页数:6
相关论文
共 29 条
[1]   Automated Calculation of Alberta Stroke Program Early CT Score Validation in Patients With Large Hemispheric Infarct [J].
Albers, Gregory W. ;
Wald, Michael J. ;
Mlynash, Michael ;
Endres, Juergen ;
Bammer, Roland ;
Straka, Matus ;
Maier, Andreas ;
Hinson, Holly E. ;
Sheth, Kevin N. ;
Kimberly, W. Taylor ;
Molyneaux, Bradley J. .
STROKE, 2019, 50 (11) :3277-3279
[2]   Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy [J].
Barber, PA ;
Demchuk, AM ;
Zhang, JJ ;
Buchan, AM .
LANCET, 2000, 355 (9216) :1670-1674
[3]   e-ASPECTS software improves interobserver agreement and accuracy of interpretation of aspects score [J].
Brinjikji, Waleed ;
Abbasi, Mehdi ;
Arnold, Catherine ;
Benson, John C. ;
Braksick, Sherry A. ;
Campeau, Norbert ;
Carr, Carrie M. ;
Cogswell, Petrice M. ;
Klaas, James P. ;
Liebo, Greta B. ;
Little, Jason T. ;
Luetmer, Patrick H. ;
Messina, Steven A. ;
Nagelschneider, Alex A. ;
Schwartz, Kara M. ;
Wood, Christopher P. ;
Nasr, Deena M. ;
Kallmes, David F. .
INTERVENTIONAL NEURORADIOLOGY, 2021, 27 (06) :781-787
[4]   Multimodal Predictive Modeling of Endovascular Treatment Outcome for Acute Ischemic Stroke Using Machine-Learning [J].
Brugnara, Gianluca ;
Neuberger, Ulf ;
Mahmutoglu, Mustafa A. ;
Foltyn, Martha ;
Herweh, Christian ;
Nagel, Simon ;
Schonenberger, Silvia ;
Heiland, Sabine ;
Ulfert, Christian ;
Ringleb, Peter Arthur ;
Bendszus, Martin ;
Mohlenbruch, Markus A. ;
Pfaff, Johannes A. R. ;
Vollmuth, Philipp .
STROKE, 2020, 51 (12) :3541-3551
[5]   Mechanical thrombectomy in patients with acute ischemic stroke and ASPECTS ≤6: a meta-analysis [J].
Cagnazzo, Federico ;
Derraz, Imad ;
Dargazanli, Cyril ;
Lefevre, Pierre-Henri ;
Gascou, Gregory ;
Riquelme, Carlos ;
Bonafe, Alain ;
Costalat, Vincent .
JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2020, 12 (04) :350-+
[6]   Interobserver variation of ASPECTS in real time [J].
Coutts, SB ;
Demchuk, AM ;
Barber, PA ;
Hu, WY ;
Simon, JE ;
Buchan, AM ;
Hill, MD .
STROKE, 2004, 35 (05) :E103-E105
[7]   Importance of early ischemic computed tomography changes using ASPECTS in NINDS rtPA stroke study [J].
Demchuk, AM ;
Hill, MD ;
Barber, PA ;
Silver, B ;
Patel, SC ;
Levine, SR .
STROKE, 2005, 36 (10) :2110-2115
[8]   Interobserver Agreement of ASPECT Score Distribution for Noncontrast CT, CT Angiography, and CT Perfusion in Acute Stroke [J].
Finlayson, Olga ;
John, Verity ;
Yeung, Robert ;
Dowlatshahi, Dar ;
Howard, Peter ;
Zhang, Liying ;
Swartz, Rick ;
Aviv, Richard I. .
STROKE, 2013, 44 (01) :234-236
[9]   Randomized Assessment of Rapid Endovascular Treatment of Ischemic Stroke [J].
Goyal, M. ;
Demchuk, A. M. ;
Menon, B. K. ;
Eesa, M. ;
Rempel, J. L. ;
Thornton, J. ;
Roy, D. ;
Jovin, T. G. ;
Willinsky, R. A. ;
Sapkota, B. L. ;
Dowlatshahi, D. ;
Frei, D. F. ;
Kamal, N. R. ;
Montanera, W. J. ;
Poppe, A. Y. ;
Ryckborst, K. J. ;
Silver, F. L. ;
Shuaib, A. ;
Tampieri, D. ;
Williams, D. ;
Bang, O. Y. ;
Baxter, B. W. ;
Burns, P. A. ;
Choe, H. ;
Heo, J. -H. ;
Holmstedt, C. A. ;
Jankowitz, B. ;
Kelly, M. ;
Linares, G. ;
Mandzia, J. L. ;
Shankar, J. ;
Sohn, S. -I. ;
Swartz, R. H. ;
Barber, P. A. ;
Coutts, S. B. ;
Smith, E. E. ;
Morrish, W. F. ;
Weill, A. ;
Subramaniam, S. ;
Mitha, A. P. ;
Wong, J. H. ;
Lowerison, M. W. ;
Sajobi, T. T. ;
Hill, M. D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (11) :1019-1030
[10]   2C or not 2C: defining an improved revascularization grading scale and the need for standardization of angiography outcomes in stroke trials [J].
Goyal, Mayank ;
Fargen, Kyle M. ;
Turk, Aquilla S. ;
Mocco, J. ;
Liebeskind, David S. ;
Frei, Donald ;
Demchuk, Andrew M. .
JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2014, 6 (02) :83-86