Computational Fluid Dynamic Analysis of a High-Pressure Spatial Chemical Vapor Deposition (HPS-CVD) Reactor for Flow Stability

被引:1
作者
Enayati, Hooman [1 ]
Pimputkar, Siddha [1 ]
机构
[1] Lehigh Univ, Ctr Photon & Nanoelect, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA
基金
美国国家科学基金会;
关键词
metal-organic chemical vapor deposition; nitrides; semiconductor materials; computational fluid dynamics; computer simulation; turbulent modeling; MOCVD REACTOR; GAN; GROWTH; CFD; MECHANISMS; BREAKING; NITRIDE; REGIMES; DESIGN; INN;
D O I
10.3390/cryst14020105
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
High indium-content group-III nitrides are of interest to further expand upon our ability to produce highly efficient optical emitters at longer visible/IR wavelengths or to broaden bandgap engineering opportunities in the group-III nitride material system. Current synthesis approaches are limited in their capabilities, in part due to the low decomposition temperature of indium nitride. A new high-pressure spatial chemical vapor deposition (HPS-CVD) has been proposed which can operate at pressures up to 100 atmospheres, thereby significantly raising the growth temperature of indium nitride more than 100 kelvins and permitting the investigation of the impact of pressure on precursor stability and reactivity. This study systematically analyzes an HPS-CVD reactor design using computational fluid dynamic modeling in order to understand favorable operating conditions for growth of group III nitrides. Specifically, the relationship between inlet gas type (nitrogen, hydrogen, or ammonia), inlet gas velocity, gas flow rate, and rotational speed of the wafer carrier is evaluated for conditions under which a smooth and dominant vortex-free flow are obtained over the wafer. Heater power was varied to maintain a wafer temperature of 1250-1300 K. Favorable operating conditions were identified that were simultaneously met for all three gas types, providing a stable operating window for a wide range of gas chemistries for growth; at one atmosphere, a disk rotational speed of 50 rpm and a flow rate of 12 slm for all gas types is desired.
引用
收藏
页数:19
相关论文
共 48 条
[1]   Characterization of InN layers grown by high-pressure chemical vapor deposition [J].
Alevli, M. ;
Durkaya, G. ;
Weerasekara, A. ;
Perera, A. G. U. ;
Dietz, N. ;
Fenwick, W. ;
Woods, V. ;
Ferguson, I. .
APPLIED PHYSICS LETTERS, 2006, 89 (11)
[2]   The 2020 UV emitter roadmap [J].
Amano, Hiroshi ;
Collazo, Ramon ;
Santi, Carlo De ;
Einfeldt, Sven ;
Funato, Mitsuru ;
Glaab, Johannes ;
Hagedorn, Sylvia ;
Hirano, Akira ;
Hirayama, Hideki ;
Ishii, Ryota ;
Kashima, Yukio ;
Kawakami, Yoichi ;
Kirste, Ronny ;
Kneissl, Michael ;
Martin, Robert ;
Mehnke, Frank ;
Meneghini, Matteo ;
Ougazzaden, Abdallah ;
Parbrook, Peter J. ;
Rajan, Siddharth ;
Reddy, Pramod ;
Roemer, Friedhard ;
Ruschel, Jan ;
Sarkar, Biplab ;
Scholz, Ferdinand ;
Schowalter, Leo J. ;
Shields, Philip ;
Sitar, Zlatko ;
Sulmoni, Luca ;
Wang, Tao ;
Wernicke, Tim ;
Weyers, Markus ;
Witzigmann, Bernd ;
Wu, Yuh-Renn ;
Wunderer, Thomas ;
Zhang, Yuewei .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (50)
[3]   Effect of hydrogen carrier gas on AlN and AlGaN growth in AMEC Prismo D-Blue® MOCVD platform [J].
Bao, Qilong ;
Zhu, Tiankai ;
Zhou, Ning ;
Guo, Shiping ;
Luo, Jun ;
Zhao, Chao .
JOURNAL OF CRYSTAL GROWTH, 2015, 419 :52-56
[4]   Numerical model of carbon chemical vapor deposition at internal surfaces [J].
Barua, Himel ;
Povitsky, Alex .
VACUUM, 2020, 175
[5]   Low background doping in AlInN grown on GaN via metalorganic vapor phase epitaxy [J].
Borovac, Damir ;
Sun, Wei ;
Peart, Matthew R. ;
Song, Renbo ;
Wierer, Jonathan J., Jr. ;
Tansu, Nelson .
JOURNAL OF CRYSTAL GROWTH, 2020, 548
[6]   Beware of symmetry breaking and periodic flow regimes in axisymmetric CVD reactor setups [J].
Cheimarios, N. ;
Kavousanakis, M. ;
Kokkoris, G. ;
Boudouvis, A. G. .
COMPUTERS & CHEMICAL ENGINEERING, 2019, 124 :124-132
[7]   Mathematical modeling and optimal design of an MOCVD reactor for GaAs film growth [J].
Chuang, Yao-Chen ;
Chen, Chyi-Tsong .
JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2014, 45 (01) :254-267
[8]  
Comsol, 2022, The Heat Transfer Module User's Guide
[9]  
Comsol, 2022, The CFD Module User's Guide
[10]  
Dietz Nikolaus, 2005, Proceedings of the SPIE - The International Society for Optical Engineering, V5912, p59120E, DOI 10.1117/12.616699