Graph neural network recommendation algorithm based on improved dual tower model

被引:2
|
作者
He, Qiang [1 ]
Li, Xinkai [2 ]
Cai, Biao [2 ,3 ]
机构
[1] Chengdu Univ Technol, Sch Mech & Elect Engn, Chengdu 610059, Peoples R China
[2] Chengdu Univ Technol, Sch Comp Sci & Cyber Secur, Chengdu 610059, Peoples R China
[3] Chengdu Univ Technol, Coll Ind Technol, Yibin 644000, Peoples R China
基金
中国国家自然科学基金;
关键词
Recommendation; Dual tower model; Graph neural network; Collaborative filtering; MATRIX FACTORIZATION;
D O I
10.1038/s41598-024-54376-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this era of information explosion, recommendation systems play a key role in helping users to uncover content of interest among massive amounts of information. Pursuing a breadth of recall while maintaining accuracy is a core challenge for current recommendation systems. In this paper, we propose a new recommendation algorithm model, the interactive higher-order dual tower (IHDT), which improves current models by adding interactivity and higher-order feature learning between the dual tower neural networks. A heterogeneous graph is constructed containing different types of nodes, such as users, items, and attributes, extracting richer feature representations through meta-paths. To achieve feature interaction, an interactive learning mechanism is introduced to inject relevant features between the user and project towers. Additionally, this method utilizes graph convolutional networks for higher-order feature learning, pooling the node embeddings of the twin towers to obtain enhanced end-user and item representations. IHDT was evaluated on the MovieLens dataset and outperformed multiple baseline methods. Ablation experiments verified the contribution of interactive learning and high-order GCN components.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Graph Neural Network Social Recommendation Algorithm Integrating Static and Dynamic Features
    Qi, Wei
    Huang, Zhenzhen
    Zhu, Dongqing
    Yu, Jiaxu
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (09)
  • [42] Memory-based Attention Graph Neural Network for Network Expert Recommendation
    Chen Z.
    Zhu M.
    Du J.
    Yuan X.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2022, 49 (06): : 116 - 123
  • [43] The short video platform recommendation mechanism based on the improved neural network algorithm to the mainstream media
    Qi, Mengruo
    SYSTEMS AND SOFT COMPUTING, 2024, 6
  • [44] A Graph-Neural-Network-Based Social Network Recommendation Algorithm Using High-Order Neighbor Information
    Yu, Yonghong
    Qian, Weiwen
    Zhang, Li
    Gao, Rong
    SENSORS, 2022, 22 (19)
  • [45] A graph neural network-based teammate recommendation model for knowledge-intensive crowdsourcing
    Zhang, Zhenyu
    Yao, Wenxin
    Li, Fangzheng
    Yu, Jiayan
    Simic, Vladimir
    Yin, Xicheng
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 137
  • [46] An Improvement of Graph Neural Network for Multi-behavior Recommendation
    Nguyen Bao Phuoc
    Duong Thuy Trang
    Phan Duy Hung
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2023, PT II, 2023, 14126 : 377 - 387
  • [47] Graph Context Target Attention Graph Neural Network for Session-based Recommendation
    Chen, Jiale
    Xing, Xing
    Niu, Yong
    Zhang, Xuanming
    Jia, Zhichun
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 83 - 88
  • [48] A Cultural Resource Recommendation Model Based On Graph Neural Networks
    Ren, Junyi
    Wang, Xingwei
    He, Qiang
    Yi, Bo
    Zhang, Yanyou
    2022 14TH INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS (ICCSN 2022), 2022, : 119 - 125
  • [49] Interaction Graph Neural Network for News Recommendation
    Qia, Yongye
    Zhao, Pengpeng
    Li, Zhixu
    Fang, Junhua
    Zhao, Lei
    Sheng, Victor S.
    Cui, Zhiming
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2019, 2019, 11881 : 599 - 614
  • [50] Federated Social Recommendation with Graph Neural Network
    Liu, Zhiwei
    Yang, Liangwei
    Fan, Ziwei
    Peng, Hao
    Yu, Philip S.
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (04)