Overexpression of a 'Beta' MYB Factor Gene, VhMYB15, Increases Salinity and Drought Tolerance in Arabidopsis thaliana

被引:3
|
作者
Han, Jiaxin [1 ]
Dai, Jing [1 ]
Chen, Zhe [1 ]
Li, Wenhui [1 ]
Li, Xingguo [1 ]
Zhang, Lihua [1 ]
Yao, Anqi [1 ]
Zhang, Bingxiu [1 ]
Han, Deguo [1 ]
机构
[1] Northeast Agr Univ, Minist Agr & Rural Affairs,Coll Hort & Landscape A, Natl Local Joint Engn Res Ctr Dev & Utilizat Small, Key Lab Biol & Genet Improvement Hort Crops Northe, Harbin 150030, Peoples R China
基金
中国国家自然科学基金;
关键词
grape; VhMYB15; salinity stress; drought stress; TRANSCRIPTION FACTOR; FUNCTIONAL-ANALYSIS; CITRATE SYNTHASE; ABIOTIC STRESS; ABSCISIC-ACID; SALT TOLERANCE; EXPRESSION; BIOSYNTHESIS; CLONING; SOS1;
D O I
10.3390/ijms25031534
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
'Beta' is a hybrid of Vitis riparia L. and V. labrusca and has a strong ability to adapt to adverse growth environments and is mainly cultivated and used as a resistant rootstock. At present, the most extensively studied MYB TFs are R2R3-type, which have been found to be involved in plant growth, development, and stress response processes. In the present research, VhMYB15, a key transcription factor for abiotic stress tolerance, was screened by bioinformatics in 'Beta' rootstock, and its function under salinity and drought stresses was investigated. VhMYB15 was highly expressed in roots and mature leave under salinity and drought stresses. Observing the phenotype and calculating the survival rate of plants, it was found that VhMYB15-overexpressing plants exhibited relatively less yellowing and wilting of leaves and a higher survival rate under salinity and drought stresses. Consistent with the above results, through the determination of stress-related physiological indicators and the expression analysis of stress-related genes (AtSOS2, AtSOS3, AtSOS1, AtNHX1, AtSnRK2.6, AtNCED3, AtP5CS1, and AtCAT1), it was found that transgenic Arabidopsis showed better stress tolerance and stronger adaptability under salinity and drought stresses. Based on the above data, it was preliminarily indicated that VhMYB15 may be a key factor in salinity and drought regulation networks, enhancing the adaptability of 'Beta' to adverse environments.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Overexpression of a Grape MYB Transcription Factor Gene VhMYB2 Increases Salinity and Drought Tolerance in Arabidopsis thaliana
    Ren, Chuankun
    Li, Zhenghao
    Song, Penghui
    Wang, Yu
    Liu, Wanda
    Zhang, Lihua
    Li, Xingguo
    Li, Wenhui
    Han, Deguo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (13)
  • [2] Overexpression of a 'Paulownia fortunei' MYB Factor Gene, PfMYB44, Increases Salt and Drought Tolerance in Arabidopsis thaliana
    Luo, Guijie
    Cai, Weijia
    Wang, Hao
    Liu, Wei
    Liu, Xu
    Shi, Shizheng
    Wang, Lei
    PLANTS-BASEL, 2024, 13 (16):
  • [3] Overexpression of a Malus baccata MYB Transcription Factor Gene MbMYB4 Increases Cold and Drought Tolerance in Arabidopsis thaliana
    Yao, Chunya
    Li, Xingguo
    Li, Yingmei
    Yang, Guohui
    Liu, Wanda
    Shao, Bangtao
    Zhong, Jiliang
    Huang, Pengfei
    Han, Deguo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (03)
  • [4] Arabidopsis thaliana Plants' Overexpression of the MYB Transcription Factor VhMYB60 in the Face of Stress Hazards Enhances Salt and Cold Tolerance
    Chen, Zhe
    Wang, Jinghan
    Li, Wenhui
    Chen, Xiang
    Zhao, Changjia
    Guo, Yanbo
    Li, Yingnan
    Chen, Zhuo
    Li, Xingguo
    Han, Deguo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (04)
  • [5] Overexpression of a Fragaria vesca MYB Transcription Factor Gene (FvMYB82) Increases Salt and Cold Tolerance in Arabidopsis thaliana
    Li, Wenhui
    Zhong, Jiliang
    Zhang, Lihua
    Wang, Yu
    Song, Penghui
    Liu, Wanda
    Li, Xingguo
    Han, Deguo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (18)
  • [6] Overexpression of a Camellia sinensis DREB transcription factor gene (CsDREB) increases salt and drought tolerance in transgenic Arabidopsis thaliana
    Wang, Mingle
    Zhuang, Jing
    Zou, Zhongwei
    Li, Qinghui
    Xin, Huahong
    Li, Xinghui
    JOURNAL OF PLANT BIOLOGY, 2017, 60 (05) : 452 - 461
  • [7] Overexpression of a Camellia sinensis DREB transcription factor gene (CsDREB) increases salt and drought tolerance in transgenic Arabidopsis thaliana
    Mingle Wang
    Jing Zhuang
    Zhongwei Zou
    Qinghui Li
    Huahong Xin
    Xinghui Li
    Journal of Plant Biology, 2017, 60 : 452 - 461
  • [8] Overexpression of a Malus baccata CBF transcription factor gene, MbCBF1, Increases cold and salinity tolerance in Arabidopsis thaliana
    Liang, Xiaoqi
    Luo, Guijie
    Li, Wenhui
    Yao, Anqi
    Liu, Wanda
    Xie, Liping
    Han, Meina
    Li, Xingguo
    Han, Deguo
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2022, 192 : 230 - 242
  • [9] Overexpression of a MYB Family Gene, OsMYB6, Increases Drought and Salinity Stress Tolerance in Transgenic Rice
    Tang, Yuehui
    Bao, Xinxin
    Zhi, Yuling
    Wu, Qian
    Guo, Yaru
    Yin, Xuhui
    Zeng, Liqin
    Li, Jia
    Zhang, Jing
    He, Wenlong
    Liu, Weihao
    Wang, Qingwei
    Jia, Chengkai
    Li, Zhengkang
    Liu, Kun
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [10] Overexpression of StERECTA enhances drought tolerance in Arabidopsis thaliana
    Liu, Xuan
    Yang, Wenjing
    Zhang, Li
    Nie, Fengjie
    Gong, Lei
    Zhang, Hongxia
    JOURNAL OF PLANT PHYSIOLOGY, 2024, 303