On a local-global principle for quadratic twists of abelian varieties

被引:2
作者
Fite, Francesc [1 ,2 ]
机构
[1] Univ Barcelona, Dept Matemat & Informat, Gran Via Corts Catalanes 585, Barcelona 08007, Catalonia, Spain
[2] Univ Barcelona, Ctr Recerca Matemat, Gran Via Corts Catalanes 585, Barcelona 08007, Catalonia, Spain
关键词
SATO-TATE DISTRIBUTIONS; GALOIS PROPERTIES; ZETA-FUNCTION; POINTS; REPRESENTATIONS; DEFINITION; CURVES; FIELDS;
D O I
10.1007/s00208-022-02535-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A and A ' be abelian varieties defined over a number field k of dimension g >= 1. For g <= 3, we show that the following local-global principle holds: A and A ' are quadratic twists of each other if and only if, for almost all primes p of k of good reduction for A and A ', the reductions Ap and Ap ' are quadratic twists of each other. This result is known when g=1, in which case it has appeared in works by Kings, Rajan, Ramakrishnan, and Serre. We provide an example that violates this local-global principle in dimension g=4.
引用
收藏
页码:769 / 794
页数:26
相关论文
共 27 条
[1]   An Algebraic Sato-Tate Group and Sato-Tate Conjecture [J].
Banaszak, Grzegorz ;
Kedlaya, Kiran S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2015, 64 (01) :245-274
[2]  
Duke W, 2000, INVENT MATH, V139, P1
[3]  
Faltings G., 1983, INVENT MATH, V73, P349
[4]  
Fité F, 2022, Arxiv, DOI [arXiv:2106.13759, DOI 10.48550/ARXIV.2106.13759PREPRINT]
[5]  
Fité F, 2022, MATH Z, V300, P2975, DOI 10.1007/s00209-021-02895-4
[6]   FIELDS OF DEFINITION OF ELLIPTIC k-CURVES AND THE REALIZABILITY OF ALL GENUS 2 SATO TATE GROUPS OVER A NUMBER FIELD [J].
Fite, Francesc ;
Guitart, Xavier .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (07) :4623-4659
[7]   Sato-Tate distributions of twists of y2 = x5 - x and y2 = x6 + 1 [J].
Fite, Francesc ;
Sutherland, Andrew V. .
ALGEBRA & NUMBER THEORY, 2014, 8 (03) :543-585
[8]   Artin representations attached to pairs of isogenous abelian varieties [J].
Fite, Francesc .
JOURNAL OF NUMBER THEORY, 2013, 133 (04) :1331-1345
[9]   Sato-Tate distributions and Galois endomorphism modules in genus 2 [J].
Fite, Francesc ;
Kedlaya, Kiran S. ;
Rotger, Victor ;
Sutherland, Andrew V. .
COMPOSITIO MATHEMATICA, 2012, 148 (05) :1390-1442
[10]  
Fite Francesc, 2021, Arithmetic Geometry, Cryptography, and Coding Theory, Contemp. Math., V770, P103, DOI 10.1090/conm/770/15432