Fractional semilinear Neumann problem with critical nonlinearity

被引:0
作者
Jin, Zhen-Feng [1 ,2 ]
Sun, Hong-Rui [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou, Gansu, Peoples R China
[2] Shanxi Normal Univ, Sch Math & Comp Sci, Thaiyuan, Shanxi, Peoples R China
关键词
Fractional Laplacian operator; Neumann boundary condition; critical exponent; POSITIVE SOLUTIONS; ELLIPTIC-EQUATIONS; CRITICAL EXPONENT; EXISTENCE; UNIQUENESS;
D O I
10.55730/1300-0098.3458
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the following critical fractional semilinear Neumann problem{ (-triangle)(1/2)u + lambda u = u n+1 n-1 , u > 0 in ohm, partial derivative(nu)u = 0 on partial derivative ohm,where ohm subset of R- n (n >= 5) is a smooth bounded domain, lambda > 0 and nu is the outward unit normal to partial derivative ohm. We prove that there exists a constant lambda(0) > 0 such that the above problem admits a minimal energy solution for lambda < lambda(0) . Moreover, if ohm is convex, we show that this solution is constant for sufficiently small lambda.
引用
收藏
页码:1715 / 1732
页数:19
相关论文
共 39 条
[11]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[12]   ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF ELLIPTIC-EQUATIONS WITH CRITICAL EXPONENTS AND NEUMANN BOUNDARY-CONDITIONS [J].
BUDD, C ;
KNAAP, MC ;
PELETIER, LA .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1991, 117 :225-250
[13]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[14]   AN EXISTENCE RESULT FOR NONLINEAR ELLIPTIC PROBLEMS INVOLVING CRITICAL SOBOLEV EXPONENT [J].
CAPOZZI, A ;
FORTUNATO, D ;
PALMIERI, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1985, 2 (06) :463-470
[15]  
Chabrowski J., 2001, COLLOQ MATH-WARSAW, V90, P19, DOI DOI 10.4064/CM90-1-2
[16]   Interior bubbling solutions for the critical Lin-Ni-Takagi problem in dimension 3 [J].
del Pino, Manuel ;
Musso, Monica ;
Roman, Carlos ;
Wei, Juncheng .
JOURNAL D ANALYSE MATHEMATIQUE, 2019, 137 (02) :813-843
[17]  
Druet O, 2012, MEM AM MATH SOC, V218, P1
[18]   SHARP CONSTANT IN A SOBOLEV TRACE INEQUALITY [J].
ESCOBAR, JF .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1988, 37 (03) :687-698
[19]  
Gilbarg David., 2001, ELLIPTIC PARTIAL DIF
[20]   A CLASS OF SOLUTIONS FOR THE NEUMANN PROBLEM -DELTA-U+LAMBDA-U=U((N+2)/(N-2)) [J].
GROSSI, M .
DUKE MATHEMATICAL JOURNAL, 1995, 79 (02) :309-334