Fractional semilinear Neumann problem with critical nonlinearity

被引:0
作者
Jin, Zhen-Feng [1 ,2 ]
Sun, Hong-Rui [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou, Gansu, Peoples R China
[2] Shanxi Normal Univ, Sch Math & Comp Sci, Thaiyuan, Shanxi, Peoples R China
关键词
Fractional Laplacian operator; Neumann boundary condition; critical exponent; POSITIVE SOLUTIONS; ELLIPTIC-EQUATIONS; CRITICAL EXPONENT; EXISTENCE; UNIQUENESS;
D O I
10.55730/1300-0098.3458
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the following critical fractional semilinear Neumann problem{ (-triangle)(1/2)u + lambda u = u n+1 n-1 , u > 0 in ohm, partial derivative(nu)u = 0 on partial derivative ohm,where ohm subset of R- n (n >= 5) is a smooth bounded domain, lambda > 0 and nu is the outward unit normal to partial derivative ohm. We prove that there exists a constant lambda(0) > 0 such that the above problem admits a minimal energy solution for lambda < lambda(0) . Moreover, if ohm is convex, we show that this solution is constant for sufficiently small lambda.
引用
收藏
页码:1715 / 1732
页数:19
相关论文
共 39 条
[1]  
ADIMURTHI, 1993, T AM MATH SOC, V336, P631
[2]   EXISTENCE AND NONEXISTENCE OF POSITIVE RADIAL SOLUTIONS OF NEUMANN PROBLEMS WITH CRITICAL SOBOLEV EXPONENTS [J].
ADIMURTHI ;
YADAVA, SL .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 115 (03) :275-296
[3]   A sharp solvability condition in higher dimensions for some Brezis-Nirenberg type equation [J].
Adimurthi ;
Mancini, G ;
Sandeep, K .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2002, 14 (03) :275-317
[4]  
Adimurthi, 1997, ARCH RATION MECH AN, V139, P239
[5]   CRITICAL SOBOLEV EXPONENT PROBLEM IN RN(N-GREATER-THAN-OR-EQUAL-TO-4) WITH NEUMANN BOUNDARY-CONDITION [J].
ADIMURTHI ;
YADAVA, SL .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1990, 100 (03) :275-284
[6]  
Adimurthi G., 1991, SCUOLA NORM SUP PISA, P9
[7]   MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM [J].
AZORERO, JG ;
ALONSO, IP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :877-895
[8]   On some critical problems for the fractional Laplacian operator [J].
Barrios, B. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6133-6162
[9]   Blow-up and nonexistence of sign changing solutions to the Brezis-Nirenberg problem in dimension three [J].
Ben Ayed, Mohamed ;
El Mehdi, Khalil ;
Pacella, Filomena .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (04) :567-589
[10]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71