Holomorphic extension in holomorphic fiber bundles with (1,0)-compactifiable fiber

被引:0
作者
Feklistov, Sergey [1 ]
机构
[1] Siberian Fed Univ, Krasnoyarsk Math Ctr, 79 Svobodny Pr, Krasnoyarsk 660041, Russia
关键词
Hartogs phenomenon; Holomorphic extension; Holomorphic fiber bundle; (1,0)-compactifiable complex manifold; THEOREM;
D O I
10.1007/s10231-023-01412-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the Leray spectral sequence for the sheaf cohomology groups with compact supports to obtain a vanishing result. The stalks of sheaves R-center dot phi O-i for the structure sheaf O on the total space of a holomorphic fiber bundle phi has canonical topology structures. Using the standard Cech argument we prove a density lemma for QDFS-topology on this stalks. In particular, we obtain a vanishing result for holomorphic fiber bundles with Stein fibers. Using Kunnet formulas, properties of an inductive topology (with respect to the pair of spaces) on the stalks of the sheaf R-center dot phi O-i and a cohomological criterion for the Hartogs phenomenon we obtain the main result on the Hartogs phenomenon for the total space of holomorphic fiber bundles with (1, 0)-compactifiable fibers.
引用
收藏
页码:1529 / 1552
页数:24
相关论文
共 28 条
[1]  
Andersson M., 2008, INSTITUT MITTAG LEFF, V31
[2]  
ANDREOTTI A, 1972, ANN SCUOLA NORM-SCI, V26, P325
[3]  
[Anonymous], 1997, Graduate Texts in Mathematics, DOI [10.1007/978-1-4612-0647-7, DOI 10.1007/978-1-4612-0647-7]
[4]  
[Anonymous], 1990, Nieuw Arch. Wisk.
[5]  
BANICA C, 1976, ALGEBRAIC METHODS GL
[6]   On Hartogs' extension theorem on (n-1)-complete complex spaces [J].
Coltoiu, M. ;
Ruppenthal, J. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 637 :41-47
[7]  
Demailly J. -P., 2012, Complex analytic and differential geometry
[8]   Holomorphic extensions in complex fiber bundles [J].
Dwilewicz, Roman J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (02) :556-565
[9]   The Hartogs extension phenomenon in almost homogeneous algebraic varieties [J].
Feklistov, S. V. .
SBORNIK MATHEMATICS, 2022, 213 (12) :1715-1739
[10]   The Hartogs Extension Phenomenon in Toric Varieties [J].
Feklistov, Sergey ;
Shchuplev, Alexey .
JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (12) :12034-12052