A Bayesian tour of binomial inference

被引:0
作者
Hughes, John [1 ]
机构
[1] Lehigh Univ, Coll Hlth, Bethlehem, PA 18015 USA
关键词
Bayesian; Binomial proportion; Conjugate prior; Teaching statistics; CONFIDENCE-INTERVALS;
D O I
10.1016/j.spl.2023.109974
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article presents inferential methods for the binomial proportion in a unified way, as vari-ations on a conjugate-Bayesian theme. An overlooked interval emerges as the best-performing approximate interval for small samples. This approach is simple, intuitive, and illuminating, and may hold pedagogical value for instructors of advanced courses on statistical inference.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] proportion: A comprehensive R package for inference on single Binomial proportion and Bayesian computations
    Subbiah, M.
    Rajeswaran, V
    SOFTWAREX, 2017, 6 : 36 - 41
  • [2] Bayesian inference for disease prevalence using negative binomial group testing
    Pritchard, Nicholas A.
    Tebbs, Joshua M.
    BIOMETRICAL JOURNAL, 2011, 53 (01) : 40 - 56
  • [3] Bayesian inference: an approach to statistical inference
    Fraser, D. A. S.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04): : 487 - 496
  • [4] Bayesian estimation of the binomial parameter in sequential experiments
    Bunouf, Pierre
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2023, 32 (11) : 2158 - 2171
  • [5] A Bayesian Inference Model for Metamemory
    Hu, Xiao
    Zheng, Jun
    Su, Ningxin
    Fan, Tian
    Yang, Chunliang
    Yin, Yue
    Fleming, Stephen M.
    Luo, Liang
    PSYCHOLOGICAL REVIEW, 2021, 128 (05) : 824 - 855
  • [6] Bayesian Inference of GNSS Failures
    Milner, Carl
    Macabiau, Christophe
    Thevenon, Paul
    JOURNAL OF NAVIGATION, 2016, 69 (02) : 277 - 294
  • [7] Bayesian inference for psychometric functions
    Kuss, M
    Jäkel, F
    Wichmann, FA
    JOURNAL OF VISION, 2005, 5 (05): : 478 - 492
  • [8] Bayesian inference for dynamical systems
    Roda, Weston C.
    INFECTIOUS DISEASE MODELLING, 2020, 5 : 221 - 232
  • [9] Bayesian Inference of Tumor Hypoxia
    Gunawan, R.
    Tenti, G.
    Sivaloganathan, S.
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2009, 1193 : 336 - 343
  • [10] Polytomies and Bayesian phylogenetic inference
    Lewis, PO
    Holder, MT
    Holsinger, KE
    SYSTEMATIC BIOLOGY, 2005, 54 (02) : 241 - 253