Bézier Type Kantorovich q-Baskakov Operators via Wavelets and Some Approximation Properties

被引:19
作者
Savas, Ekrem [1 ]
Mursaleen, Mohammad [2 ,3 ]
机构
[1] Suleyman Demirel Univ, Dept Math, TR-32260 Isparta, Turkiye
[2] China Med Univ, China Med Univ Hosp, Dept Chinese Med, Taichung, Taiwan
[3] Aligarh Muslim Univ, Dept Math, Aligarh 202002, India
关键词
Bezier basis; Baskakov operators; Kantorovich Baskakov operators; q-integer; Wavelets; Approximation; Chanturiya's modulus of variation; Bounded variation; BEZIER TYPE OPERATORS; CONVERGENCE;
D O I
10.1007/s41980-023-00815-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct the Bezier variant of the operators constructed by Nasiruzzaman et al. (Iran J Sci Technol Trans A Sci 46(5):1495-1503, 2022). We use the notion of wavelets to construct Bezier type Kantorovich q-Baskakov wavelet operators. We calculate the moments and central moments and prove some approximation results for our new operators.
引用
收藏
页数:14
相关论文
共 15 条
  • [1] Abel U., 2003, DEMONSTR MATH, V36, P123, DOI DOI 10.1515/DEMA-2003-0114
  • [2] Agratini O., 1997, Revue d'analyse numerique et de theorie de l'approximation, V26, P3
  • [3] Chang GZ, 1983, J COMPUT MATH, V1, P322
  • [4] Chui CK., 1992, An Introduction to Wavelets, DOI [10.5555/163196, DOI 10.5555/163196]
  • [5] Daubechies Ingrid, 1992, Ten Lectures on Wavelets, DOI DOI 10.1137/1.9781611970104
  • [6] Ditzian Z., 1987, MODULI SMOOTHNESS, DOI [10.1007/978-1-4612-4778-4, DOI 10.1007/978-1-4612-4778-4]
  • [7] Gonska H. H., 1995, Rev. Anal. Numer. Theor. Approx., V24, P131
  • [8] Statistical approximation properties of q-Baskakov-Kantorovich operators
    Gupta, Vijay
    Radu, Cristina
    [J]. CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2009, 7 (04): : 809 - 818
  • [9] Kac V., 2002, Quantum calculus, DOI [DOI 10.1007/978-1-4613-0071-7, 10.1007/978-1-4613-0071-7]
  • [10] ON WAVELET TYPE GENERALIZED BEZIER OPERATORS
    Karsli, Harun
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTING, 2023, 6 (03): : 439 - 452