Bézier Type Kantorovich q-Baskakov Operators via Wavelets and Some Approximation Properties

被引:29
作者
Savas, Ekrem [1 ]
Mursaleen, Mohammad [2 ,3 ]
机构
[1] Suleyman Demirel Univ, Dept Math, TR-32260 Isparta, Turkiye
[2] China Med Univ, China Med Univ Hosp, Dept Chinese Med, Taichung, Taiwan
[3] Aligarh Muslim Univ, Dept Math, Aligarh 202002, India
关键词
Bezier basis; Baskakov operators; Kantorovich Baskakov operators; q-integer; Wavelets; Approximation; Chanturiya's modulus of variation; Bounded variation; BEZIER TYPE OPERATORS; CONVERGENCE;
D O I
10.1007/s41980-023-00815-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct the Bezier variant of the operators constructed by Nasiruzzaman et al. (Iran J Sci Technol Trans A Sci 46(5):1495-1503, 2022). We use the notion of wavelets to construct Bezier type Kantorovich q-Baskakov wavelet operators. We calculate the moments and central moments and prove some approximation results for our new operators.
引用
收藏
页数:14
相关论文
共 15 条
[1]  
Abel U., 2003, DEMONSTR MATH, V36, P123, DOI DOI 10.1515/DEMA-2003-0114
[2]  
Agratini O., 1997, Revue d'analyse numerique et de theorie de l'approximation, V26, P3
[3]  
Chang G., 1983, J COMPUT MATH, V1, P322
[4]  
Chui CK., 1992, An Introduction to Wavelets, DOI [10.5555/163196, DOI 10.5555/163196]
[5]  
Daubechies I, 1992, 10 LECT WAVELETS, DOI [DOI 10.1137/1.9781611970104, 10.1137/1.9781611970104]
[6]  
Ditzian Z., 1987, Moduli of smoothness, DOI [10.1007/978-1-4612-4778-4, DOI 10.1007/978-1-4612-4778-4]
[7]  
Gonska H. H., 1995, Revue d'analyse numerique et de theorie de l'approximation, P131
[8]   Statistical approximation properties of q-Baskakov-Kantorovich operators [J].
Gupta, Vijay ;
Radu, Cristina .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2009, 7 (04) :809-818
[9]  
Kac V., 2002, Quantum Calculus, DOI [10.1007/978-1-4613-0071-7, DOI 10.1007/978-1-4613-0071-7]
[10]   ON WAVELET TYPE GENERALIZED BEZIER OPERATORS [J].
Karsli, Harun .
MATHEMATICAL FOUNDATIONS OF COMPUTING, 2023, 6 (03) :439-452