Robust optimal subsampling based on weighted asymmetric least squares

被引:2
|
作者
Ren, Min [1 ]
Zhao, Shengli [1 ]
Wang, Mingqiu [1 ]
Zhu, Xinbei [2 ]
机构
[1] Qufu Normal Univ, Sch Stat & Data Sci, Qufu 273165, Shandong, Peoples R China
[2] Virginia Tech Univ, Dept Comp Sci, Blacksburg, VA 24061 USA
基金
中国国家自然科学基金;
关键词
Asymmetric least squares; Massive data; Poisson subsampling; Robustness; REGRESSION;
D O I
10.1007/s00362-023-01480-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
With the development of contemporary science, a large amount of generated data includes heterogeneity and outliers in the response and/or covariates. Furthermore, subsampling is an effective method to overcome the limitation of computational resources. However, when data include heterogeneity and outliers, incorrect subsampling probabilities may select inferior subdata, and statistic inference on this subdata may have a far inferior performance. Combining the asymmetric least squares and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} estimation, this paper proposes a double-robustness framework (DRF), which can simultaneously tackle the heterogeneity and outliers in the response and/or covariates. The Poisson subsampling is implemented based on the DRF for massive data, and a more robust probability will be derived to select the subdata. Under some regularity conditions, we establish the asymptotic properties of the subsampling estimator based on the DRF. Numerical studies and actual data demonstrate the effectiveness of the proposed method.
引用
收藏
页码:2221 / 2251
页数:31
相关论文
共 50 条
  • [41] An iterative solution of weighted total least-squares adjustment
    Shen, Yunzhong
    Li, Bofeng
    Chen, Yi
    JOURNAL OF GEODESY, 2011, 85 (04) : 229 - 238
  • [42] Research on Water Quality Predictive Model Based on Robust Splines Partial Least Squares
    Xie Peizhang
    Zhou Xingpeng
    2014 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, ELECTRONICS AND ELECTRICAL ENGINEERING (ISEEE), VOLS 1-3, 2014, : 1713 - +
  • [43] Robust least-squares scene matching algorithm based on generalized cost function
    Xu, BC
    Chen, Z
    PROCEEDINGS OF THE THIRD INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION SCIENCE AND TECHNOLOGY, VOL 2, 2004, : 319 - 324
  • [44] Optimal Learning Rates for Kernel Partial Least Squares
    Lin, Shao-Bo
    Zhou, Ding-Xuan
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2018, 24 (03) : 908 - 933
  • [45] Robust Multichannel Linear Prediction for Online Speech Dereverberation Using Weighted Householder Least Squares Lattice Adaptive Filter
    Wung, Jason
    Jukic, Ante
    Malik, Sarmad
    Souden, Mehrez
    Pichevar, Ramin
    Atkins, Joshua
    Naik, Devang
    Acero, Alex
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 3559 - 3574
  • [46] Block Weighted Least Squares Estimation for Nonlinear Cost-based Split Questionnaire Design
    Li, Yang
    Qi, Le
    Qin, Yichen
    Lin, Cunjie
    Yang, Yuhong
    JOURNAL OF OFFICIAL STATISTICS, 2023, 39 (04) : 459 - 487
  • [47] Robust solutions to least-squares problems with uncertain data
    ElGhaoui, L
    Lebret, H
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1997, 18 (04) : 1035 - 1064
  • [48] Robustness properties of a robust partial least squares regression method
    Vanden Branden, K
    Hubert, M
    ANALYTICA CHIMICA ACTA, 2004, 515 (01) : 229 - 241
  • [49] NORMAL MAXIMUM LIKELIHOOD, WEIGHTED LEAST SQUARES, AND RIDGE REGRESSION ESTIMATES
    Withers, Christopher S.
    Nadarajah, Saralees
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2012, 32 (01): : 11 - 24
  • [50] Weighted least-squares fitting of circles with variance component estimation
    Fang, Xing
    Hu, Yu
    Zeng, Wenxian
    Akyilmaz, O.
    MEASUREMENT, 2022, 205