Robust optimal subsampling based on weighted asymmetric least squares

被引:2
|
作者
Ren, Min [1 ]
Zhao, Shengli [1 ]
Wang, Mingqiu [1 ]
Zhu, Xinbei [2 ]
机构
[1] Qufu Normal Univ, Sch Stat & Data Sci, Qufu 273165, Shandong, Peoples R China
[2] Virginia Tech Univ, Dept Comp Sci, Blacksburg, VA 24061 USA
基金
中国国家自然科学基金;
关键词
Asymmetric least squares; Massive data; Poisson subsampling; Robustness; REGRESSION;
D O I
10.1007/s00362-023-01480-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
With the development of contemporary science, a large amount of generated data includes heterogeneity and outliers in the response and/or covariates. Furthermore, subsampling is an effective method to overcome the limitation of computational resources. However, when data include heterogeneity and outliers, incorrect subsampling probabilities may select inferior subdata, and statistic inference on this subdata may have a far inferior performance. Combining the asymmetric least squares and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} estimation, this paper proposes a double-robustness framework (DRF), which can simultaneously tackle the heterogeneity and outliers in the response and/or covariates. The Poisson subsampling is implemented based on the DRF for massive data, and a more robust probability will be derived to select the subdata. Under some regularity conditions, we establish the asymptotic properties of the subsampling estimator based on the DRF. Numerical studies and actual data demonstrate the effectiveness of the proposed method.
引用
收藏
页码:2221 / 2251
页数:31
相关论文
共 50 条
  • [21] Structured Least Squares Problems and Robust Estimators
    Pilanci, Mert
    Arikan, Orhan
    Pinar, Mustafa C.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (05) : 2453 - 2465
  • [22] Robust least squares for quantized data matrices
    Becker, Stephen
    Clancy, Richard J.
    SIGNAL PROCESSING, 2020, 176
  • [23] A spatially robust least squares crosstalk canceller
    Kallinger, Markus
    Mertins, Alfred
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL I, PTS 1-3, PROCEEDINGS, 2007, : 177 - +
  • [24] Robust Iterative Algorithm of Weighted Least Squares Support Vector Machine and Its Application in Spectral Analysis
    Bao Xin
    Dai Liankui
    ACTA CHIMICA SINICA, 2009, 67 (10) : 1081 - 1086
  • [25] On weighted total least-squares for geodetic transformations
    Mahboub, Vahid
    JOURNAL OF GEODESY, 2012, 86 (05) : 359 - 367
  • [26] Adaptive weighted least squares regression for subspace clustering
    Bouhlel, Noura
    Feki, Ghada
    Ben Amar, Chokri
    KNOWLEDGE AND INFORMATION SYSTEMS, 2021, 63 (11) : 2883 - 2900
  • [27] Uncertainty analysis of the weighted least squares VNA calibration
    Wong, K
    DIGITAL COMMUNICATIONS SYSTEMS METRICS, 2004, : 23 - 31
  • [28] Adaptive weighted least squares regression for subspace clustering
    Noura Bouhlel
    Ghada Feki
    Chokri Ben Amar
    Knowledge and Information Systems, 2021, 63 : 2883 - 2900
  • [29] Optimal subsampling for least absolute relative error estimators with massive data
    Ren, Min
    Zhao, Shengli
    Wang, Mingqiu
    JOURNAL OF COMPLEXITY, 2023, 74
  • [30] Influence Function Analysis for the Robust Partial Least Squares (RoPLS) Estimator
    Turkmen, Asuman S.
    Billor, Nedret
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (15) : 2818 - 2836