Lipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeutics

被引:177
作者
Jin, Hao-Ran [1 ,2 ]
Wang, Jin [1 ,2 ]
Wang, Zi-Jing [1 ,2 ]
Xi, Ming-Jia [1 ,2 ]
Xia, Bi-Han [1 ,2 ]
Deng, Kai [1 ,2 ]
Yang, Jin-Lin [1 ,2 ]
机构
[1] Sichuan Univ, Dept Gastroenterol & Hepatol, West China Hosp, 37 Guoxue Rd, Chengdu 610041, Sichuan, Peoples R China
[2] Sichuan Univ, Sichuan Univ Univ Oxford Huaxi Joint Ctr Gastroint, West China Hosp, Frontiers Sci Ctr Dis Related Mol Network, Chengdu, Peoples R China
关键词
Lipid metabolism; Tumor microenvironment; Cancer progression; Immune response; Targeted therapy; FATTY-ACID OXIDATION; BREAST-CANCER CELLS; COA-DESATURASE; CHOLINE KINASE-ALPHA; ATP-CITRATE LYASE; CD8(+) T-CELLS; SUPPRESSOR-CELLS; DENDRITIC CELL; GLUTAMINE-METABOLISM; LUNG-CANCER;
D O I
10.1186/s13045-023-01498-2
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Lipid metabolic reprogramming is an emerging hallmark of cancer. In order to sustain uncontrolled proliferation and survive in unfavorable environments that lack oxygen and nutrients, tumor cells undergo metabolic transformations to exploit various ways of acquiring lipid and increasing lipid oxidation. In addition, stromal cells and immune cells in the tumor microenvironment also undergo lipid metabolic reprogramming, which further affects tumor functional phenotypes and immune responses. Given that lipid metabolism plays a critical role in supporting cancer progression and remodeling the tumor microenvironment, targeting the lipid metabolism pathway could provide a novel approach to cancer treatment. This review seeks to: (1) clarify the overall landscape and mechanisms of lipid metabolic reprogramming in cancer, (2) summarize the lipid metabolic landscapes within stromal cells and immune cells in the tumor microenvironment, and clarify their roles in tumor progression, and (3) summarize potential therapeutic targets for lipid metabolism, and highlight the potential for combining such approaches with other anti-tumor therapies to provide new therapeutic opportunities for cancer patients.
引用
收藏
页数:33
相关论文
共 326 条
[1]   Inhibition of phosphatidylcholine-specific phospholipase C results in loss of mesenchymal traits in metastatic breast cancer cells [J].
Abalsamo, Laura ;
Spadaro, Francesca ;
Bozzuto, Giuseppina ;
Paris, Luisa ;
Cecchetti, Serena ;
Lugini, Luana ;
Iorio, Egidio ;
Molinari, Agnese ;
Ramoni, Carlo ;
Podo, Franca .
BREAST CANCER RESEARCH, 2012, 14 (02)
[2]   Triglycerides Promote Lipid Homeostasis during Hypoxic Stress by Balancing Fatty Acid Saturation [J].
Ackerman, Daniel ;
Tumanov, Sergey ;
Qiu, Bo ;
Michalopoulou, Evdokia ;
Spata, Michelle ;
Azzam, Andrew ;
Xie, Hong ;
Simon, M. Celeste ;
Kamphorst, Jurre J. .
CELL REPORTS, 2018, 24 (10) :2596-+
[3]   Regulation of ROS in myeloid-derived suppressor cells through targeting fatty acid transport protein 2 enhanced anti-PD-L1 tumor immunotherapy [J].
Adeshakin, Adeleye Oluwatosin ;
Liu, Wan ;
Adeshakin, Funmilayo O. ;
Afolabi, Lukman O. ;
Zhang, Mengqi ;
Zhang, Guizhong ;
Wang, Lulu ;
Li, Zhihuan ;
Lin, Lilong ;
Cao, Qin ;
Yan, Dehong ;
Wan, Xiaochun .
CELLULAR IMMUNOLOGY, 2021, 362
[4]   Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells [J].
Al-Khami, Amir A. ;
Zheng, Liqin ;
Del Valle, Luis ;
Hossain, Fokhrul ;
Wyczechowska, Dorota ;
Zabaleta, Jovanny ;
Sanchez, Maria D. ;
Dean, Matthew J. ;
Rodriguez, Paulo C. ;
Ochoa, Augusto C. .
ONCOIMMUNOLOGY, 2017, 6 (10)
[5]   Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated non-small cell lung cancer [J].
Ali, Azhar ;
Levantini, Elena ;
Teo, Jun Ting ;
Goggi, Julian ;
Clohessy, John G. ;
Wu, Chan Shuo ;
Chen, Leilei ;
Yang, Henry ;
Krishnan, Indira ;
Kocher, Olivier ;
Zhang, Junyan ;
Soo, Ross A. ;
Bhakoo, Kishore ;
Chin, Tan Min ;
Tenen, Daniel G. .
EMBO MOLECULAR MEDICINE, 2018, 10 (03)
[6]   Changes in Aged Fibroblast Lipid Metabolism Induce Age-Dependent Melanoma Cell Resistance to Targeted Therapy via the Fatty Acid Transporter FATP2 [J].
Alicea, Gretchen M. ;
Rebecca, Vito W. ;
Goldman, Aaron R. ;
Fane, Mitchell E. ;
Douglass, Stephen M. ;
Behera, Reeti ;
Webster, Marie R. ;
Kugel, Curtis H., III ;
Ecker, Brett L. ;
Caino, M. Cecilia ;
Kossenkov, Andrew, V ;
Tang, Hsin-Yao ;
Frederick, Dennie T. ;
Flaherty, Keith T. ;
Xu, Xiaowei ;
Liu, Qin ;
Gabrilovich, Dmitry, I ;
Herlyn, Meenhard ;
Blair, Ian A. ;
Schug, Zachary T. ;
Speicher, David W. ;
Weeraratna, Ashani T. .
CANCER DISCOVERY, 2020, 10 (09) :1282-1295
[7]   GS-0976 (Firsocostat): an investigational liver-directed acetyl-CoA carboxylase (ACC) inhibitor for the treatment of non-alcoholic steatohepatitis (NASH) [J].
Alkhouri, Naim ;
Lawitz, Eric ;
Noureddin, Mazen ;
DeFronzo, Ralph ;
Shulman, Gerald, I .
EXPERT OPINION ON INVESTIGATIONAL DRUGS, 2020, 29 (02) :135-141
[8]   Fasnall, a Selective FASN Inhibitor, Shows Potent Anti-tumor Activity in the MMTV-Neu Model of HER2+ Breast Cancer [J].
Alwarawrah, Yazan ;
Hughes, Philip ;
Loiselle, David ;
Carlson, David A. ;
Darr, David B. ;
Jordan, Jamie L. ;
Xiong, Jessie ;
Hunter, Lucas M. ;
Dubois, Laura G. ;
Thompson, J. Will ;
Kulkarni, Manjusha M. ;
Ratcliff, Annette N. ;
Kwiek, Jesse J. ;
Haystead, Timothy A. J. .
CELL CHEMICAL BIOLOGY, 2016, 23 (06) :678-688
[9]   SCD1, autophagy and cancer: implications for therapy [J].
Ascenzi, Francesca ;
De Vitis, Claudia ;
Maugeri-Sacca, Marcello ;
Napoli, Christian ;
Ciliberto, Gennaro ;
Mancini, Rita .
JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH, 2021, 40 (01)
[10]   Drilling for Oil: Tumor-Surrounding Adipocytes Fueling Cancer [J].
Attane, Camille ;
Muller, Catherine .
TRENDS IN CANCER, 2020, 6 (07) :593-604