Quantum capacitance of quasi-2D-crystals

被引:1
作者
Lukiyanets, Bohdan A. [1 ]
Matulka, Dariia V. [1 ]
机构
[1] Lviv Polytech Natl Univ, 12 Bandery St, UA-79000 Lvov, Ukraine
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2024年 / 38卷 / 22期
关键词
Layered crystals; transition metal dichalcogenides; A(3)B(6)-type crystals; graphite; graphene; quantum capacitance; density of states; INTERCALATION;
D O I
10.1142/S0217979224502904
中图分类号
O59 [应用物理学];
学科分类号
摘要
Results of research in the quantum capacitance Cq of quasi-2D-crystals are presented. The detected extraordinary behavior of Cq manifests itself in the existence of such energy ranges in which it is practically equal to zero. The causes for the existence of such ranges are: (a) dimensional quantization as a result of the nanoscale of the van der Waals gap, (b) a certain value of the width of the allowed zone in the plane of the layers, which is determined by the value of the effective mass. Intercalation and external electric field are effective factors capable of changing the position of ranges. Thus, in a system connected in a series of electrostatic and quantum capacitances, the resulting capacitance will significantly depend on the Cq behavior. Comparative analyses of structures, chemical bonds, majority of coinciding characteristics of physical quantities in graphite, transition metal dichalcogenides (TMD), and layered crystals A(3)B(6) allow us to assert that the obtained qualitative conclusions can be applied for each of them. Calculations of density of states (DOS) of quasi-2D crystals performed by authors within the framework of the improved Kohn-Sham density functional theory (DFT), namely the DFT taking into account the van der Waals forces in it, show a step-like form of DOS qualitatively similar to ours.
引用
收藏
页数:11
相关论文
共 23 条
[11]   Atomic and structural modifications of two-dimensional transition metal dichalcogenides for various advanced applications [J].
Kirubasankar, Balakrishnan ;
Won, Yo Seob ;
Adofo, Laud Anim ;
Choi, Soo Ho ;
Kim, Soo Min ;
Kim, Ki Kang .
CHEMICAL SCIENCE, 2022, 13 (26) :7707-7738
[12]   Chemistry Makes Graphene beyond Graphene [J].
Liao, Lei ;
Peng, Hailin ;
Liu, Zhongfan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (35) :12194-12200
[13]  
Lukiyanets B. A., 2018, J NANO ELECT PHYS, V10, P1
[14]   QUANTUM CAPACITANCE DEVICES [J].
LURYI, S .
APPLIED PHYSICS LETTERS, 1988, 52 (06) :501-503
[15]   Two-dimensional gas of massless Dirac fermions in graphene [J].
Novoselov, KS ;
Geim, AK ;
Morozov, SV ;
Jiang, D ;
Katsnelson, MI ;
Grigorieva, IV ;
Dubonos, SV ;
Firsov, AA .
NATURE, 2005, 438 (7065) :197-200
[16]  
SAFRAN SA, 1987, SOLID STATE PHYS, V40, P183
[17]   Emerging Photoluminescence in Monolayer MoS2 [J].
Splendiani, Andrea ;
Sun, Liang ;
Zhang, Yuanbo ;
Li, Tianshu ;
Kim, Jonghwan ;
Chim, Chi-Yung ;
Galli, Giulia ;
Wang, Feng .
NANO LETTERS, 2010, 10 (04) :1271-1275
[18]   Graphene research and their outputs: Status and prospect [J].
Tiwari, Santosh K. ;
Sahoo, Sumanta ;
Wang, Nannan ;
Huczko, Andrzej .
JOURNAL OF SCIENCE-ADVANCED MATERIALS AND DEVICES, 2020, 5 (01) :10-29
[19]   Opportunities in electrically tunable 2D materials beyond graphene: Recent progress and future outlook [J].
Vincent, Tom ;
Liang, Jiayun ;
Singh, Simrjit ;
Castanon, Eli G. ;
Zhang, Xiaotian ;
McCreary, Amber ;
Jariwala, Deep ;
Kazakova, Olga ;
Al Balushi, Zakaria Y. .
APPLIED PHYSICS REVIEWS, 2021, 8 (04)
[20]  
Wang QH, 2012, NAT NANOTECHNOL, V7, P699, DOI [10.1038/nnano.2012.193, 10.1038/NNANO.2012.193]