Quantum capacitance of quasi-2D-crystals

被引:1
作者
Lukiyanets, Bohdan A. [1 ]
Matulka, Dariia V. [1 ]
机构
[1] Lviv Polytech Natl Univ, 12 Bandery St, UA-79000 Lvov, Ukraine
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2024年 / 38卷 / 22期
关键词
Layered crystals; transition metal dichalcogenides; A(3)B(6)-type crystals; graphite; graphene; quantum capacitance; density of states; INTERCALATION;
D O I
10.1142/S0217979224502904
中图分类号
O59 [应用物理学];
学科分类号
摘要
Results of research in the quantum capacitance Cq of quasi-2D-crystals are presented. The detected extraordinary behavior of Cq manifests itself in the existence of such energy ranges in which it is practically equal to zero. The causes for the existence of such ranges are: (a) dimensional quantization as a result of the nanoscale of the van der Waals gap, (b) a certain value of the width of the allowed zone in the plane of the layers, which is determined by the value of the effective mass. Intercalation and external electric field are effective factors capable of changing the position of ranges. Thus, in a system connected in a series of electrostatic and quantum capacitances, the resulting capacitance will significantly depend on the Cq behavior. Comparative analyses of structures, chemical bonds, majority of coinciding characteristics of physical quantities in graphite, transition metal dichalcogenides (TMD), and layered crystals A(3)B(6) allow us to assert that the obtained qualitative conclusions can be applied for each of them. Calculations of density of states (DOS) of quasi-2D crystals performed by authors within the framework of the improved Kohn-Sham density functional theory (DFT), namely the DFT taking into account the van der Waals forces in it, show a step-like form of DOS qualitatively similar to ours.
引用
收藏
页数:11
相关论文
共 23 条
[1]   EFFECT OF ULTRASONIC TREATMENT ON THE PROPERTIES OF PYROPHYLLITE AND THERMODYNAMIC AND KINETIC REGULARITIES OF ITS INTERCALATION WITH LITHIUM [J].
Balaban, O. V. ;
Hryhorchak, I. I. ;
Kondyr, A. I. .
MATERIALS SCIENCE, 2014, 50 (01) :109-116
[2]   The ultrasonic modification of thermodynamic and kinetic regularity of lithium intercalation in talc [J].
Balaban, O. V. ;
Grygorchak, I. I. ;
Peleshchak, R. M. ;
Kuzyk, O. V. ;
Dan'kiv, O. O. .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2014, 24 (04) :397-404
[3]  
BASTARD G, 1991, SOLID STATE PHYS, V44, P229
[4]   Interplay of quantum capacitance with Van der Waals forces, intercalation, co-intercalation, and the number of MoS2 layers [J].
Biby, Ahmed H. ;
Ali, Basant A. ;
Allam, Nageh K. .
MATERIALS TODAY ENERGY, 2021, 20
[5]   Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene [J].
Butler, Sheneve Z. ;
Hollen, Shawna M. ;
Cao, Linyou ;
Cui, Yi ;
Gupta, Jay A. ;
Gutierrez, Humberto R. ;
Heinz, Tony F. ;
Hong, Seung Sae ;
Huang, Jiaxing ;
Ismach, Ariel F. ;
Johnston-Halperin, Ezekiel ;
Kuno, Masaru ;
Plashnitsa, Vladimir V. ;
Robinson, Richard D. ;
Ruoff, Rodney S. ;
Salahuddin, Sayeef ;
Shan, Jie ;
Shi, Li ;
Spencer, Michael G. ;
Terrones, Mauricio ;
Windl, Wolfgang ;
Goldberger, Joshua E. .
ACS NANO, 2013, 7 (04) :2898-2926
[6]   Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2 [J].
Cheiwchanchamnangij, Tawinan ;
Lambrecht, Walter R. L. .
PHYSICAL REVIEW B, 2012, 85 (20)
[7]   Van der waals density functional for general geometries (vol 92, art no 246401, 2004) -: art. no. 109902 [J].
Dion, M ;
Rydberg, H ;
Schröder, E ;
Langreth, DC ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 2005, 95 (10)
[8]  
Frindt R., 1966, J APPL PHYS, V37
[9]   SINGLE-LAYER MOS2 [J].
JOENSEN, P ;
FRINDT, RF ;
MORRISON, SR .
MATERIALS RESEARCH BULLETIN, 1986, 21 (04) :457-461
[10]   Intercalation in two-dimensional transition metal chalcogenides [J].
Jung, Yeonwoong ;
Zhou, Yu ;
Cha, Judy J. .
INORGANIC CHEMISTRY FRONTIERS, 2016, 3 (04) :452-463