Advancing Soil Organic Carbon and Total Nitrogen Modelling in Peatlands: The Impact of Environmental Variable Resolution and vis-NIR Spectroscopy Integration

被引:4
作者
Mendes, Wanderson de Sousa [1 ]
Sommer, Michael [1 ,2 ]
机构
[1] Leibniz Ctr Agr Landscape Res ZALF, Landscape Pedol Working Grp, Res Area 1 Landscape Functioning, D-15374 Muncheberg, Germany
[2] Univ Potsdam, Inst Geog & Environm Sci, D-14476 Potsdam, Germany
来源
AGRONOMY-BASEL | 2023年 / 13卷 / 07期
关键词
diffuse reflectance spectroscopy; soil spectroscopy; remote sensing; proximal sensing; digital elevation model; machine learning; peatland soils; NEAR-INFRARED SPECTROSCOPY; REFLECTANCE SPECTROSCOPY; PREPROCESSING TECHNIQUES; PREDICTION; PERFORMANCE;
D O I
10.3390/agronomy13071800
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Visible and near-infrared (vis-NIR) spectroscopy has proven to be a straightforward method for sample preparation and scaling soil testing, while the increasing availability of high-resolution remote sensing (RS) data has further facilitated the understanding of spatial variability in soil organic carbon (SOC) and total nitrogen (TN) across landscapes. However, the impact of combining vis-NIR spectroscopy with high-resolution RS data for SOC and TN prediction remains an open question. This study evaluated the effects of incorporating a high-resolution LiDAR-derived digital elevation model (DEM) and a medium-resolution SRTM-derived DEM with vis-NIR spectroscopy for predicting SOC and TN in peatlands. A total of 57 soil cores, comprising 262 samples from various horizons (<2 m), were collected and analysed for SOC and TN content using traditional methods and ASD Fieldspec(& REG;) 4. The 262 observations, along with elevation data from LiDAR and SRTM, were divided into 80% training and 20% testing datasets. By employing the Cubist modelling approach, the results demonstrated that incorporating high-resolution LiDAR data with vis-NIR spectra improved predictions of SOC (RMSE: 4.60%, RPIQ: 9.00) and TN (RMSE: 3.06 g kg(-1), RPIQ: 7.05). In conclusion, the integration of LiDAR and soil spectroscopy holds significant potential for enhancing soil mapping and promoting sustainable soil management.
引用
收藏
页数:11
相关论文
共 41 条
[1]   Soil spectroscopy with the use of chemometrics, machine learning and pre-processing techniques in soil diagnosis: Recent advances-A review [J].
Barra, Issam ;
Haefele, Stephan M. ;
Sakrabani, Ruben ;
Kebede, Fassil .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2021, 135
[2]   Performance comparison between a miniaturized and a conventional near infrared reflectance (NIR) spectrometer for characterizing soil carbon and nitrogen [J].
Barthes, Bernard G. ;
Kouakoua, Ernest ;
Clairotte, Michael ;
Lallemand, Jordane ;
Chapuis-Lardy, Lydie ;
Rabenarivo, Michel ;
Roussel, Sylvie .
GEODERMA, 2019, 338 :422-429
[3]  
Batjes NH, 2014, EUR J SOIL SCI, V65, P10, DOI [10.1111/j.1365-2389.1996.tb01386.x, 10.1111/ejss.12114_2]
[4]   NEAR-INFRARED ANALYSIS AS A RAPID METHOD TO SIMULTANEOUSLY EVALUATE SEVERAL SOIL PROPERTIES [J].
BENDOR, E ;
BANIN, A .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1995, 59 (02) :364-372
[5]   VISIBLE AND NEAR-INFRARED (0.4-1.1 MU-M) ANALYSIS OF ARID AND SEMIARID SOILS [J].
BENDOR, E ;
BANIN, A .
REMOTE SENSING OF ENVIRONMENT, 1994, 48 (03) :261-274
[6]   HIGH SPECTRAL RESOLUTION REFLECTANCE SPECTROSCOPY OF MINERALS [J].
CLARK, RN ;
KING, TVV ;
KLEJWA, M ;
SWAYZE, GA ;
VERGO, N .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1990, 95 (B8) :12653-12680
[7]   The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges [J].
Dematte, Jose A. M. ;
Dotto, Andre Carnieletto ;
Paivaa, Ariane F. S. ;
Sato, Marcus, V ;
Dalmolin, Ricardo S. D. ;
de Araujo, Maria do Socorro B. ;
da Silva, Elisangela B. ;
Nanni, Marcos R. ;
ten Caten, Alexandre ;
Noronha, Norberto C. ;
Lacerda, Marilusa P. C. ;
de Araujo Filho, Jose Coelho ;
Rizzo, Rodnei ;
Bellinaso, Henrique ;
Francelino, Marcio R. ;
Schaefer, Carlos E. G. R. ;
Vicente, Luiz E. ;
dos Santos, Uemeson J. ;
Barretto Sampaio, Everardo V. de Sa ;
Menezes, Romulo S. C. ;
de Souza, Jose Joao L. L. ;
Abrahao, Walter A. P. ;
Coelho, Ricardo M. ;
Grego, Celia R. ;
Lani, Joao L. ;
Fernandes, Antonio R. ;
Goncalves, Deyvison A. M. ;
Silva, Sergio H. G. ;
de Menezes, Michele D. ;
Curi, Nilton ;
Couto, Eduardo G. ;
dos Anjos, Lucia H. C. ;
Ceddia, Marcos B. ;
Pinheiro, Erika F. M. ;
Grunwald, Sabine ;
Vasques, Gustavo M. ;
Marques Junior, Jose ;
da Silvax, Airon J. ;
de Vasconcelos Barreto, Marcos C. ;
Nobrega, Gabriel N. ;
da Silva, Marcelo Z. ;
de Souza, Sara F. ;
Valladares, Gustavo S. ;
Viana, Joao Herbert M. ;
Terra, Fabricio da Silva ;
Horak-Terra, Ingrid ;
Fiorio, Peterson R. ;
da Silva, Rafael C. ;
Frade Junior, Elizio F. ;
Lima, Raimundo H. C. .
GEODERMA, 2019, 354
[8]  
DIN, 1998, 13878 DIN ISO
[9]  
DIN, 1996, ISO10694199608 DIN
[10]   Mapping upland peat depth using airborne radiometric and lidar survey data [J].
Gatis, N. ;
Luscombe, D. J. ;
Carless, D. ;
Parry, L. E. ;
Fyfe, R. M. ;
Harrod, T. R. ;
Brazier, R. E. ;
Anderson, K. .
GEODERMA, 2019, 335 :78-87