Advancing Soil Organic Carbon and Total Nitrogen Modelling in Peatlands: The Impact of Environmental Variable Resolution and vis-NIR Spectroscopy Integration

被引:2
作者
Mendes, Wanderson de Sousa [1 ]
Sommer, Michael [1 ,2 ]
机构
[1] Leibniz Ctr Agr Landscape Res ZALF, Landscape Pedol Working Grp, Res Area 1 Landscape Functioning, D-15374 Muncheberg, Germany
[2] Univ Potsdam, Inst Geog & Environm Sci, D-14476 Potsdam, Germany
来源
AGRONOMY-BASEL | 2023年 / 13卷 / 07期
关键词
diffuse reflectance spectroscopy; soil spectroscopy; remote sensing; proximal sensing; digital elevation model; machine learning; peatland soils; NEAR-INFRARED SPECTROSCOPY; REFLECTANCE SPECTROSCOPY; PREPROCESSING TECHNIQUES; PREDICTION; PERFORMANCE;
D O I
10.3390/agronomy13071800
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Visible and near-infrared (vis-NIR) spectroscopy has proven to be a straightforward method for sample preparation and scaling soil testing, while the increasing availability of high-resolution remote sensing (RS) data has further facilitated the understanding of spatial variability in soil organic carbon (SOC) and total nitrogen (TN) across landscapes. However, the impact of combining vis-NIR spectroscopy with high-resolution RS data for SOC and TN prediction remains an open question. This study evaluated the effects of incorporating a high-resolution LiDAR-derived digital elevation model (DEM) and a medium-resolution SRTM-derived DEM with vis-NIR spectroscopy for predicting SOC and TN in peatlands. A total of 57 soil cores, comprising 262 samples from various horizons (<2 m), were collected and analysed for SOC and TN content using traditional methods and ASD Fieldspec(& REG;) 4. The 262 observations, along with elevation data from LiDAR and SRTM, were divided into 80% training and 20% testing datasets. By employing the Cubist modelling approach, the results demonstrated that incorporating high-resolution LiDAR data with vis-NIR spectra improved predictions of SOC (RMSE: 4.60%, RPIQ: 9.00) and TN (RMSE: 3.06 g kg(-1), RPIQ: 7.05). In conclusion, the integration of LiDAR and soil spectroscopy holds significant potential for enhancing soil mapping and promoting sustainable soil management.
引用
收藏
页数:11
相关论文
共 41 条
  • [1] Soil spectroscopy with the use of chemometrics, machine learning and pre-processing techniques in soil diagnosis: Recent advances-A review
    Barra, Issam
    Haefele, Stephan M.
    Sakrabani, Ruben
    Kebede, Fassil
    [J]. TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2021, 135
  • [2] Performance comparison between a miniaturized and a conventional near infrared reflectance (NIR) spectrometer for characterizing soil carbon and nitrogen
    Barthes, Bernard G.
    Kouakoua, Ernest
    Clairotte, Michael
    Lallemand, Jordane
    Chapuis-Lardy, Lydie
    Rabenarivo, Michel
    Roussel, Sylvie
    [J]. GEODERMA, 2019, 338 : 422 - 429
  • [3] Batjes NH, 1996, EUR J SOIL SCI, V47, P151, DOI [10.1111/j.1365-2389.1996.tb01386.x, 10.1111/ejss.12114_2]
  • [4] NEAR-INFRARED ANALYSIS AS A RAPID METHOD TO SIMULTANEOUSLY EVALUATE SEVERAL SOIL PROPERTIES
    BENDOR, E
    BANIN, A
    [J]. SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1995, 59 (02) : 364 - 372
  • [5] VISIBLE AND NEAR-INFRARED (0.4-1.1 MU-M) ANALYSIS OF ARID AND SEMIARID SOILS
    BENDOR, E
    BANIN, A
    [J]. REMOTE SENSING OF ENVIRONMENT, 1994, 48 (03) : 261 - 274
  • [6] HIGH SPECTRAL RESOLUTION REFLECTANCE SPECTROSCOPY OF MINERALS
    CLARK, RN
    KING, TVV
    KLEJWA, M
    SWAYZE, GA
    VERGO, N
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1990, 95 (B8): : 12653 - 12680
  • [7] The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges
    Dematte, Jose A. M.
    Dotto, Andre Carnieletto
    Paivaa, Ariane F. S.
    Sato, Marcus, V
    Dalmolin, Ricardo S. D.
    de Araujo, Maria do Socorro B.
    da Silva, Elisangela B.
    Nanni, Marcos R.
    ten Caten, Alexandre
    Noronha, Norberto C.
    Lacerda, Marilusa P. C.
    de Araujo Filho, Jose Coelho
    Rizzo, Rodnei
    Bellinaso, Henrique
    Francelino, Marcio R.
    Schaefer, Carlos E. G. R.
    Vicente, Luiz E.
    dos Santos, Uemeson J.
    Barretto Sampaio, Everardo V. de Sa
    Menezes, Romulo S. C.
    de Souza, Jose Joao L. L.
    Abrahao, Walter A. P.
    Coelho, Ricardo M.
    Grego, Celia R.
    Lani, Joao L.
    Fernandes, Antonio R.
    Goncalves, Deyvison A. M.
    Silva, Sergio H. G.
    de Menezes, Michele D.
    Curi, Nilton
    Couto, Eduardo G.
    dos Anjos, Lucia H. C.
    Ceddia, Marcos B.
    Pinheiro, Erika F. M.
    Grunwald, Sabine
    Vasques, Gustavo M.
    Marques Junior, Jose
    da Silvax, Airon J.
    de Vasconcelos Barreto, Marcos C.
    Nobrega, Gabriel N.
    da Silva, Marcelo Z.
    de Souza, Sara F.
    Valladares, Gustavo S.
    Viana, Joao Herbert M.
    Terra, Fabricio da Silva
    Horak-Terra, Ingrid
    Fiorio, Peterson R.
    da Silva, Rafael C.
    Frade Junior, Elizio F.
    Lima, Raimundo H. C.
    [J]. GEODERMA, 2019, 354
  • [8] DIN, 1998, 13878 DIN ISO
  • [9] DIN, 1996, ISO10694199608 DIN
  • [10] Mapping upland peat depth using airborne radiometric and lidar survey data
    Gatis, N.
    Luscombe, D. J.
    Carless, D.
    Parry, L. E.
    Fyfe, R. M.
    Harrod, T. R.
    Brazier, R. E.
    Anderson, K.
    [J]. GEODERMA, 2019, 335 : 78 - 87