Passage from the Boltzmann equation with diffuse boundary to the incompressible Euler equation with heat convection

被引:5
作者
Cao, Yunbai [1 ]
Jang, Juhi [2 ]
Kim, Chanwoo [3 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
[3] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
NAVIER-STOKES EQUATION; INVISCID LIMIT PROBLEM; ZERO VISCOSITY LIMIT; FLUID DYNAMIC LIMITS; GEOMETRIC CORRECTION; VORTICITY EQUATIONS; HYDRODYNAMIC LIMIT; ANALYTIC SOLUTIONS; KINETIC-EQUATIONS; HALF-SPACE;
D O I
10.1016/j.jde.2023.04.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive the incompressible Euler equations with heat convection with the no-penetration boundary condition from the Boltzmann equation with the diffuse boundary in the hydrodynamic limit for the scale of large Reynold number. Inspired by the recent framework in [30], we consider the Navier-Stokes-Fourier system with no-slip boundary conditions as an intermediary approximation and develop a Hilbert-type expansion of the Boltzmann equation around the global Maxwellian that allows the nontrivial heat transfer by convection in the limit. To justify our expansion and the limit, a new direct estimate of the heat flux and its derivatives in the Navier-Stokes-Fourier system is established adopting a recent Green's function approach in the study of the inviscid limit.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:565 / 644
页数:80
相关论文
共 59 条
[1]  
[Anonymous], 2009, Lecture Notes in Mathematics
[2]  
[Anonymous], 1984, SEMINAR NONLINEAR PD
[3]  
[Anonymous], 2000, Ser. Appl. Math.
[4]   FLUID DYNAMIC LIMITS OF KINETIC-EQUATIONS .1. FORMAL DERIVATIONS [J].
BARDOS, C ;
GOLSE, F ;
LEVERMORE, D .
JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (1-2) :323-344
[5]   FLUID DYNAMIC LIMITS OF KINETIC EQUATIONS-II CONVERGENCE PROOFS FOR THE BOLTZMANN-EQUATION [J].
BARDOS, C ;
GOLSE, F ;
LEVERMORE, CD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (05) :667-753
[6]   THE INCOMPRESSIBLE EULER LIMIT OF THE BOLTZMANN EQUATION WITH ACCOMMODATION BOUNDARY CONDITION [J].
Bardos, Claude ;
Golse, Francois ;
Paillard, Lionel .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2012, 10 (01) :159-190
[7]   From Boltzmann to incompressible Navier-Stokes in Sobolev spaces with polynomial weight [J].
Briant, Marc ;
Merino-Aceituno, Sara ;
Mouhot, Clement .
ANALYSIS AND APPLICATIONS, 2019, 17 (01) :85-116
[8]   THE FLUID DYNAMIC LIMIT OF THE NON-LINEAR BOLTZMANN-EQUATION [J].
CAFLISCH, RE .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (05) :651-666
[9]  
Cao Y., SPRINGER INDAM SERIE, V48, DOI [/10.1007/978-3-030-82946-9_4, DOI 10.1007/978-3-030-82946-9_4]
[10]   Global Strong Solutions of the Vlasov-Poisson-Boltzmann System in Bounded Domains [J].
Cao, Yunbai ;
Kim, Chanwoo ;
Lee, Donghyun .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 233 (03) :1027-1130