Hermite-Hadamard-type inequalities via different convexities with applications

被引:5
作者
Samraiz, Muhammad [1 ]
Malik, Maria [1 ]
Naheed, Saima [1 ]
Rahman, Gauhar [2 ]
Nonlaopon, Kamsing [3 ]
机构
[1] Univ Sargodha, Dept Math, Sargodha 40100, Pakistan
[2] Hazara Univ Mansehra, Dept Math & Stat, Mansehra, Pakistan
[3] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
关键词
Error estimates; Hermite-Hadamard-type inequalities; m-convex function; Trapezoid rule; INTEGRAL-INEQUALITIES; MAPPINGS;
D O I
10.1186/s13660-023-02957-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we explore a class of Hermite-Hadamard integral inequalities for convex and m-convex functions. The Holder inequality is used to create this class, which has a wide range of applications in optimization theory. Some trapezoid-type inequalities and midpoint error estimates are investigated. Inequalities for several q-special functions are highlighted. As particular cases, we have included several previous results.
引用
收藏
页数:16
相关论文
共 24 条
[1]   On M-convex functions [J].
Awan, Muhammad Uzair ;
Noor, Muhammad Aslam ;
Du, Tingsong ;
Noor, Khalida Inayat .
AIMS MATHEMATICS, 2020, 5 (03) :2376-2387
[2]   Hermite-Hadamard-Fejer type inequalities via fractional integral of a function concerning another function [J].
Baleanu, Dumitru ;
Samraiz, Muhammad ;
Perveen, Zahida ;
Iqbal, Sajid ;
Nisar, Kottakkaran Sooppy ;
Rahman, Gauhar .
AIMS MATHEMATICS, 2021, 6 (05) :4280-4295
[3]  
Dragomir S.S., 2002, TAMKANG J MATH, V33, P1, DOI [10.5556/j.tkjm.33.2002.304, DOI 10.5556/J.TKJM.33.2002.304]
[4]   Some Inequalities for a New Class of Convex Functions with Applications via Local Fractional Integral [J].
Ge-JiLe, Hu ;
Rashid, Saima ;
Farooq, Fozia Bashir ;
Sultana, Sobia .
JOURNAL OF FUNCTION SPACES, 2021, 2021
[5]  
Gradshteyn I. S., 2007, TABLE INTEGRALS SERI
[6]   Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals [J].
Iscan, Imdat ;
Wu, Shanhe .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 :237-244
[7]   Weighted Midpoint Hermite-Hadamard-Fejer Type Inequalities in Fractional Calculus for Harmonically Convex Functions [J].
Kalsoom, Humaira ;
Vivas-Cortez, Miguel ;
Amer Latif, Muhammad ;
Ahmad, Hijaz .
FRACTAL AND FRACTIONAL, 2021, 5 (04)
[8]   Some (p, q)-Estimates of Hermite-Hadamard-Type Inequalities for Coordinated Convex and Quasi- Convex Functions [J].
Kalsoom, Humaira ;
Amer, Muhammad ;
Junjua, Moin-ud-Din ;
Hussain, Sabir ;
Shahzadi, Gullnaz .
MATHEMATICS, 2019, 7 (08)
[9]  
Khan M.B., 2022, FRACTAL FRACT, V2022
[10]   Some inequalities for mappings whose derivatives are bounded and applications to special means of real numbers [J].
Kirmaci, US ;
Özdemir, ME .
APPLIED MATHEMATICS LETTERS, 2004, 17 (06) :641-645