A Residual Learning-Aided Convolutional Autoencoder for SCMA

被引:2
作者
Jiang, Fang [1 ,2 ]
Chang, Da-Wei [3 ]
Ma, Song [3 ]
Hu, Yan-Jun [1 ,2 ]
Xu, Yao-Hua [1 ,2 ]
机构
[1] Anhui Univ, Key Lab Intelligent Comp & Signal Proc, Hefei 230601, Peoples R China
[2] Anhui Internet Things Spectrum Sensing & Testing E, Hefei 230601, Peoples R China
[3] Anhui Univ, Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Decoding; Residual neural networks; Convolutional neural networks; Deep learning; Computational complexity; Neural networks; Network architecture; SCMA; deep learning; residual learning; convolutional autoencoder; DEEP; NETWORKS;
D O I
10.1109/LCOMM.2023.3260881
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Sparse code multiple access (SCMA) is a code-domain non-orthogonal multiple access (NOMA) technology proposed to meet the access needs of large-scale intelligent terminal devices with high spectrum utilization. To improve the accuracy and computational complexity of SCMA to accommodate the internet of things (IoT) scenario, we design a new end-to-end autoencoder combining convolutional neural networks (CNNs) and residual networks. A residual network with multitask learning improves the decoding accuracy, and CNN units are used for SCMA codeword mapping, with sparse connectivity and weight-sharing to reduce the number of trainable parameters. Simulations show that this scheme outperforms existing autoencoder schemes in bit error rate (BER) and computational complexity.
引用
收藏
页码:1337 / 1341
页数:5
相关论文
共 19 条
  • [1] Convolutional Neural Networks for blind decoding in Sparse Code Multiple Access
    Abidi, Imen
    Hizem, Moez
    Ahriz, Iness
    Cherif, Maha
    Bouallegue, Ridha
    [J]. 2019 15TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2019, : 2007 - 2012
  • [2] Altera Innovate Asia, 1 5G ALG INN COMP SC
  • [3] Dai LL, 2015, IEEE COMMUN MAG, V53, P74, DOI 10.1109/MCOM.2015.7263349
  • [4] Application of Non-Orthogonal Multiple Access in LTE and 5G Networks
    Ding, Zhiguo
    Liu, Yuanwei
    Choi, Jinho
    Sun, Qi
    Elkashlan, Maged
    I, Chih-Lin
    Poor, H. Vincent
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2017, 55 (02) : 185 - 191
  • [5] Deep Learning-Based Detection for Moderate-Density Code Multiple Access in IoT Networks
    Han, Yu
    Wang, Zhenyong
    Guo, Qing
    Xiang, Wei
    [J]. IEEE COMMUNICATIONS LETTERS, 2020, 24 (01) : 122 - 125
  • [6] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [7] Novel low-density signature for synchronous CDMA systems over AWGN channel
    Hoshyar, Reza
    Wathan, Perry P.
    Tafazolli, Rahim
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (04) : 1616 - 1626
  • [8] A Low Complexity Detection Algorithm for Fixed Up-Link SCMA System in Mission Critical Scenario
    Jia, Min
    Wang, Linfang
    Guo, Qing
    Gu, Xuemai
    Xiang, Wei
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2018, 5 (05): : 3289 - 3297
  • [9] Jia Z, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), P319, DOI 10.1109/CompComm.2015.7387589
  • [10] Deep Learning-Aided SCMA
    Kim, Minhoe
    Kim, Nam-I
    Lee, Woongsup
    Cho, Dong-Ho
    [J]. IEEE COMMUNICATIONS LETTERS, 2018, 22 (04) : 720 - 723