A Survey on Data-Driven Runoff Forecasting Models Based on Neural Networks

被引:17
作者
Sheng, Ziyu [1 ]
Wen, Shiping [1 ]
Feng, Zhong-kai [2 ]
Gong, Jiaqi [3 ]
Shi, Kaibo [4 ]
Guo, Zhenyuan [5 ]
Yang, Yin [6 ]
Huang, Tingwen [7 ]
机构
[1] Univ Technol Sydney, Australian AI Inst, Fac Engn & Informat Technol, Ultimo 2007, Australia
[2] Hohai Univ, Coll Hydrol & Water Resources, Nanjing 210098, Peoples R China
[3] Univ Sydney, Business Sch, Camperdown 2006, Australia
[4] Chengdu Univ, Sch Informat Sci & Engn, Chengdu 611040, Peoples R China
[5] Hunan Univ, Coll Math & Econometr, Changsha 410082, Peoples R China
[6] Hamad Bin Khalifa Univ, Coll Sci Engn & Technol, Doha 5855, Qatar
[7] Texas A&M Univ, Doha 23874, Qatar
来源
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE | 2023年 / 7卷 / 04期
关键词
Forecasting; Predictive models; Time series analysis; Convolutional neural networks; Biological neural networks; Biological system modeling; Data models; Time series forecasting; neural network; runoff forecasting; machine learning; TIME-SERIES; DECOMPOSITION; ACCURACY; SPECTRUM; WATER;
D O I
10.1109/TETCI.2023.3259434
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As an important branch of time series forecasting, runoff forecasting provides a reliable decision-making basis for the rational use of water resources, economic development and ecological management of river basins. With the revolution of computing power, the data-driven model has become the mainstream runoff forecasting method. This survey will introduce and explore several types of existing neural network for runoff forecasting: convolutional neural network (CNN), recurrent neural network (RNN) and Transformer. The advantages and limitations of these referenced models are also discussed. In addition, this paper also discusses the future improvement directions of runoff forecasting models from the three directions of accuracy, robustness and interpretability. Through plug-and-play lightweight attention mechanism modules, reliable ensemble methods, and forward-looking interpretability methods, the potential of runoff forecasting models can be further tapped to improve the overall performance.
引用
收藏
页码:1083 / 1097
页数:15
相关论文
共 121 条
  • [51] Distance measures for effective clustering of ARIMA time-series
    Kalpakis, K
    Gada, D
    Puttagunta, V
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, : 273 - 280
  • [52] Lower Upper Bound Estimation Method for Construction of Neural Network-Based Prediction Intervals
    Khosravi, Abbas
    Nahavandi, Saeid
    Creighton, Doug
    Atiya, Amir F.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (03): : 337 - 346
  • [53] Time series forecasting using a deep belief network with restricted Boltzmann machines
    Kuremoto, Takashi
    Kimura, Shinsuke
    Kobayashi, Kunikazu
    Obayashi, Masanao
    [J]. NEUROCOMPUTING, 2014, 137 : 47 - 56
  • [54] An Experimental Review on Deep Learning Architectures for Time Series Forecasting
    Lara-Benitez, Pedro
    Carranza-Garcia, Manuel
    Riquelme, Jose C.
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2021, 31 (03)
  • [55] PREDICTION OF MULTIVARIATE TIME-SERIES BY AUTOREGRESSIVE MODEL-FITTING
    LEWIS, R
    REINSEL, GC
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1985, 16 (03) : 393 - 411
  • [56] Prediction of Flow Based on a CNN-LSTM Combined Deep Learning Approach
    Li, Peifeng
    Zhang, Jin
    Krebs, Peter
    [J]. WATER, 2022, 14 (06)
  • [57] A method of rainfall runoff forecasting based on deep convolution neural networks
    Li, Xiaoli
    Du, Zhenlong
    Song, Guomei
    [J]. 2018 SIXTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA (CBD), 2018, : 304 - 310
  • [58] Temporal Fusion Transformers for interpretable multi-horizon time series forecasting
    Lim, Bryan
    Arik, Sercan O.
    Loeff, Nicolas
    Pfister, Tomas
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2021, 37 (04) : 1748 - 1764
  • [59] Time-series forecasting with deep learning: a survey
    Lim, Bryan
    Zohren, Stefan
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2194):
  • [60] Lim S., PHILOS T R SOC A