Learning Swarm Interaction Dynamics From Density Evolution
被引:0
|
作者:
Mavridis, Christos N.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
Univ Maryland, Inst Syst Res, College Pk, MD 20742 USAUniv Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
Mavridis, Christos N.
[1
,2
]
Tirumalai, Amoolya
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
Univ Maryland, Inst Syst Res, College Pk, MD 20742 USAUniv Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
Tirumalai, Amoolya
[1
,2
]
Baras, John S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
Univ Maryland, Inst Syst Res, College Pk, MD 20742 USAUniv Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
Baras, John S.
[1
,2
]
机构:
[1] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Syst Res, College Pk, MD 20742 USA
来源:
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS
|
2023年
/
10卷
/
01期
关键词:
Mathematical models;
Hydrodynamics;
Power system dynamics;
Numerical models;
Network systems;
Green's function methods;
Evolution (biology);
Biological networks;
learning;
networks of autonomous agents;
swarm interaction dynamics;
COLLECTIVE BEHAVIOR;
FLOCKING DYNAMICS;
SYSTEMS;
D O I:
10.1109/TCNS.2022.3198784
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
In this article, we consider the problem of understanding the coordinated movements of biological or artificial swarms. In this regard, we propose a learning scheme to estimate the coordination laws of the interacting agents from observations of the swarm's density over time. We describe the dynamics of the swarm based on pairwise interactions according to a Cucker-Smale flocking model, and express the swarm's density evolution as the solution to a system of mean-field hydrodynamic equations. We propose a new family of parametric functions to model the pairwise interactions, which allows for the mean-field macroscopic system of integro-differential equations to be efficiently solved as an augmented system of partial differential equations. Finally, we incorporate the augmented system in an iterative optimization scheme to learn the dynamics of the interacting agents from observations of the swarm's density evolution over time. The results of this work can offer an alternative approach to study how animal flocks coordinate, create new control schemes for large networked systems, and serve as a central part of defense mechanisms against adversarial drone attacks.
机构:
Univ San Pablo CEU, Escuela Politecn Super, Dept Informat Technol, Campus Monteprincipe, Madrid 28668, Spain
Univ Distancia Madrid, Dept Math & Didact, UDIMA, Madrid, SpainUniv San Pablo CEU, Escuela Politecn Super, Dept Informat Technol, Campus Monteprincipe, Madrid 28668, Spain
Palencia, Jose Luis Diaz
Otero, Abraham
论文数: 0引用数: 0
h-index: 0
机构:
Univ San Pablo CEU, Escuela Politecn Super, Dept Informat Technol, Campus Monteprincipe, Madrid 28668, SpainUniv San Pablo CEU, Escuela Politecn Super, Dept Informat Technol, Campus Monteprincipe, Madrid 28668, Spain
机构:
Harvard Univ, Quantitat Biol Initiat, Cambridge, MA 02138 USAHarvard Univ, Quantitat Biol Initiat, Cambridge, MA 02138 USA
Gilpin, William
Huang, Yitong
论文数: 0引用数: 0
h-index: 0
机构:
Dartmouth Coll, Dept Math, Hanover, NH 03755 USAHarvard Univ, Quantitat Biol Initiat, Cambridge, MA 02138 USA
Huang, Yitong
Forger, Daniel B.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Quantitat Biol Initiat, Cambridge, MA 02138 USA
Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
Univ Michigan, Michigan Inst Data Sci, Ann Arbor, MI 48109 USAHarvard Univ, Quantitat Biol Initiat, Cambridge, MA 02138 USA