Myeloid-derived suppressor cells: key immunosuppressive regulators and therapeutic targets in hematological malignancies

被引:24
作者
Wang, Shifen [1 ]
Zhao, Xingyun [1 ]
Wu, Siwen [1 ]
Cui, Dawei [1 ]
Xu, Zhenshu [2 ]
机构
[1] Zhejiang Univ, Affiliated Hosp 1, Dept Blood Transfus, Sch Med, Hangzhou, Peoples R China
[2] Fujian Med Univ, Fujian Inst Hematol, Dept Hematol, Fujian Prov Key Lab Hematol,Union Hosp, Fuzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Hematological malignancies; Myeloid-derived suppressor cells; Immunosuppressive regulator; Tumor microenvironment; Immunotherapy; T-CELLS; BONE-MARROW; IMMUNE-RESPONSE; TUMOR MICROENVIRONMENT; CARCINOMA PATIENTS; NK CELLS; DIFFERENTIATION; TOLERANCE; LYMPHOMA; MDSCS;
D O I
10.1186/s40364-023-00475-8
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The immunosuppressive tumor microenvironment (TME) supports the development of tumors and limits tumor immunotherapy, including hematological malignancies. Hematological malignancies remain a major public health issue with high morbidity and mortality worldwide. As an important component of immunosuppressive regulators, the phenotypic characteristics and prognostic value of myeloid-derived suppressor cells (MDSCs) have received much attention. A variety of MDSC-targeting therapeutic approaches have produced encouraging outcomes. However, the use of various MDSC-targeted treatment strategies in hematologic malignancies is still difficult due to the heterogeneity of hematologic malignancies and the complexity of the immune system. In this review, we summarize the biological functions of MDSCs and further provide a summary of the phenotypes and suppressive mechanisms of MDSC populations expanded in various types of hematological malignancy contexts. Moreover, we discussed the clinical correlation between MDSCs and the diagnosis of malignant hematological disease, as well as the drugs targeting MDSCs, and focused on summarizing the therapeutic strategies in combination with other immunotherapies, such as various immune checkpoint inhibitors (ICIs), that are under active investigation. We highlight the new direction of targeting MDSCs to improve the therapeutic efficacy of tumors.
引用
收藏
页数:20
相关论文
共 179 条
[31]   Myeloid-derived suppressor cells induce multiple myeloma cell survival by activating the AMPK pathway [J].
De Veirman, Kim ;
Menu, Eline ;
Maes, Ken ;
De Beule, Nathan ;
De Smedt, Eva ;
Maes, Anke ;
Vlummens, Philip ;
Fostier, Karel ;
Kassambara, Alboukadel ;
Moreaux, Jerome ;
Van Ginderachter, Jo A. ;
De Bruyne, Elke ;
Vanderkerken, Karin ;
Van Valckenborgh, Els .
CANCER LETTERS, 2019, 442 :233-241
[32]   Extracellular S100A9 Protein in Bone Marrow Supports Multiple Myeloma Survival by Stimulating Angiogenesis and Cytokine Secretion [J].
De Veirman, Kim ;
De Beule, Nathan ;
Maes, Ken ;
Menu, Eline ;
De Bruyne, Elke ;
De Raeve, Hendrik ;
Fostier, Karel ;
Moreaux, Jerome ;
Kassambara, Alboukadel ;
Hose, Dirk ;
Heusschen, Roy ;
Eriksson, Helena ;
Vanderkerken, Karin ;
Van Valckenborgh, Els .
CANCER IMMUNOLOGY RESEARCH, 2017, 5 (10) :839-846
[33]  
De Veirman K, 2015, ONCOTARGET, V6, P10532
[34]   The Role of Myeloid-Derived Suppressor Cells (MDSCs) in Graft-versus-Host Disease (GVHD) [J].
Demosthenous, Christos ;
Sakellari, Ioanna ;
Douka, Vassiliki ;
Papayanni, Penelope Georgia ;
Anagnostopoulos, Achilles ;
Gavriilaki, Eleni .
JOURNAL OF CLINICAL MEDICINE, 2021, 10 (10)
[35]   Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF [J].
Dolcetti, Luigi ;
Peranzoni, Elisa ;
Ugel, Stefano ;
Marigo, Ilaria ;
Fernandez Gomez, Audry ;
Mesa, Circe ;
Geilich, Markus ;
Winkels, Gregor ;
Traggiai, Elisabetta ;
Casati, Anna ;
Grassi, Fabio ;
Bronte, Vincenzo .
EUROPEAN JOURNAL OF IMMUNOLOGY, 2010, 40 (01) :22-35
[36]   IMMUNOREGULATORY ROLE OF BONE-MARROW .1. SUPPRESSION OF THE INDUCTION OF ANTIBODY-RESPONSES TO T-DEPENDENT AND T-INDEPENDENT ANTIGENS BY CELLS IN THE BONE-MARROW [J].
DUWE, AK ;
SINGHAL, SK .
CELLULAR IMMUNOLOGY, 1979, 43 (02) :362-371
[37]   Novel therapeutic approach to improve hematopoiesis in low risk MDS by targeting MDSCs with the Fc-engineered CD33 antibody BI 836858 [J].
Eksioglu, E. A. ;
Chen, X. ;
Heider, K-H ;
Rueter, B. ;
McGraw, K. L. ;
Basiorka, A. A. ;
Wei, M. ;
Burnette, A. ;
Cheng, P. ;
Lancet, J. ;
Komrokji, R. ;
Djeu, J. ;
List, A. ;
Wei, S. .
LEUKEMIA, 2017, 31 (10) :2172-2180
[38]   The prognostic value and therapeutic targeting of myeloid-derived suppressor cells in hematological cancers [J].
Fan, Rong ;
De Beule, Nathan ;
Maes, Anke ;
De Bruyne, Elke ;
Menu, Eline ;
Vanderkerken, Karin ;
Maes, Ken ;
Breckpot, Karine ;
De Veirman, Kim .
FRONTIERS IN IMMUNOLOGY, 2022, 13
[39]   Myeloid-derived suppressor cell subtypes differentially influence T-cell function, T-helper subset differentiation, and clinical course in CLL [J].
Ferrer, Gerardo ;
Jung, Byeongho ;
Chiu, Pui Yan ;
Aslam, Rukhsana ;
Palacios, Florencia ;
Mazzarello, Andrea Nicola ;
Vergani, Stefano ;
Bagnara, Davide ;
Chen, Shih-Shih ;
Yancopoulos, Sophia ;
Xochelli, Aliki ;
Yan, Xiao-Jie ;
Burger, Jan A. ;
Barrientos, Jacqueline C. ;
Kolitz, Jonathan E. ;
Allen, Steven L. ;
Stamatopoulos, Kostas ;
Rai, Kanti R. ;
Sherry, Barbara ;
Chiorazzi, Nicholas .
LEUKEMIA, 2021, 35 (11) :3163-3175
[40]   Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor based antitumor vaccine [J].
Filipazzi, Paola ;
Valenti, Roberta ;
Huber, Veronica ;
Pilla, Lorenzo ;
Canese, Paola ;
Iero, Manuela ;
Castelli, Chiara ;
Mariani, Luigi ;
Parmiani, Giorgio ;
Rivoltini, Licia .
JOURNAL OF CLINICAL ONCOLOGY, 2007, 25 (18) :2546-2553