Fringe Projection Profilometry Based on Saturated Fringe Restoration in High Dynamic Range Scenes

被引:7
|
作者
Li, Hongru [1 ]
Wei, Hao [1 ]
Liu, Jiangtao [1 ]
Deng, Guoliang [1 ]
Zhou, Shouhuan [1 ]
Wang, Wenwu [2 ]
He, Liang [2 ]
Tian, Peng [2 ]
机构
[1] Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Sch Mech Engn, Chengdu 610065, Peoples R China
关键词
fringe projection profilometry; three-dimensional measurement; high dynamic range; fringe saturation; saturated fringe restoration; 3-DIMENSIONAL SHAPE MEASUREMENT; PHASE-MEASURING PROFILOMETRY; SHIFTING PROFILOMETRY; ERROR; COMPENSATION; INTENSITY; TRANSFORM; OBJECTS;
D O I
10.3390/s23063133
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In high dynamic scenes, fringe projection profilometry (FPP) may encounter fringe saturation, and the phase calculated will also be affected to produce errors. This paper proposes a saturated fringe restoration method to solve this problem, taking the four-step phase shift as an example. Firstly, according to the saturation of the fringe group, the concepts of reliable area, shallow saturated area, and deep saturated area are proposed. Then, the parameter A related to the reflectivity of the object in the reliable area is calculated to interpolate A in the shallow and deep saturated areas. The theoretically shallow and deep saturated areas are not known in actual experiments. However, morphological operations can be used to dilate and erode reliable areas to produce cubic spline interpolation areas (CSI) and biharmonic spline interpolation (BSI) areas, which roughly correspond to shallow and deep saturated areas. After A is restored, it can be used as a known quantity to restore the saturated fringe using the unsaturated fringe in the same position, the remaining unrecoverable part of the fringe can be completed using CSI, and then the same part of the symmetrical fringe can be further restored. To further reduce the influence of nonlinear error, the Hilbert transform is also used in the phase calculation process of the actual experiment. The simulation and experimental results validate that the proposed method can still obtain correct results without adding additional equipment or increasing projection number, which proves the feasibility and robustness of the method.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] High dynamic range 3D measurements with fringe projection profilometry: a review
    Feng, Shijie
    Zhang, Liang
    Zuo, Chao
    Tao, Tianyang
    Chen, Qian
    Gu, Guohua
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2018, 29 (12)
  • [2] Synthesize-Then-Evaluate Based Optimal Exposures Selection for High Dynamic Range Fringe Projection Profilometry
    Liu, Zhenyu
    Tang, Peng
    Sa, Guodong
    Ge, Junkai
    Tan, Jianrong
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2024,
  • [3] Dynamic projection theory for fringe projection profilometry
    Sheng, Hong
    Xu, Jing
    Zhang, Song
    APPLIED OPTICS, 2017, 56 (30) : 8452 - 8460
  • [4] Stable 3D measurement method for high dynamic range surfaces based on fringe projection profilometry
    Zhu, Zhenmin
    Li, Minchao
    Zhou, Fuqiang
    You, Duoduo
    OPTICS AND LASERS IN ENGINEERING, 2023, 166
  • [5] Fringe Order Correction for Fringe Projection Profilometry Based on Robust Principal Component Analysis
    Zhang, Yiwei
    Tong, Jun
    Lu, Lei
    Xi, Jiangtao
    Yu, Yanguang
    Guo, Qinghua
    IEEE ACCESS, 2021, 9 : 23110 - 23119
  • [6] High Sensitivity Fringe Projection Profilometry Combining Optimal Fringe Frequency and Optimal Fringe Direction
    Yu, Jin
    Gao, Nan
    Zhang, Zonghua
    Meng, Zhaozong
    OPTICS AND LASERS IN ENGINEERING, 2020, 129
  • [7] Neuromorphic Fringe Projection Profilometry
    Mangalore, Ashish Rao
    Seelamantula, Chandra Sekhar
    Thakur, Chetan Singh
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1510 - 1514
  • [8] Specular reflection compensation in homography fringe projection profilometry
    Li, Jinlong
    Ren, Hongbing
    Luo, Peng
    Gao, Xiaorong
    Wang, Zeyong
    OPTIK, 2017, 140 : 413 - 422
  • [9] Fringe projection profilometry based on complementary color-encoded fringe patterns
    Da, Feipeng
    Wang, Luyang
    Hu, Luyao
    OPTICS AND LASER TECHNOLOGY, 2012, 44 (08) : 2332 - 2339
  • [10] Adaptive Binocular Fringe Dynamic Projection Method for High Dynamic Range Measurement
    Yu, Changzhi
    Ji, Fang
    Xue, Junpeng
    Wang, Yajun
    SENSORS, 2019, 19 (18)