Self-Consistent Stochastic Dynamics for Finite-Size Networks of Spiking Neurons

被引:6
|
作者
Vinci, Gianni V. [1 ,2 ]
Benzi, Roberto [3 ,4 ]
Mattia, Maurizio [1 ]
机构
[1] Ist Super Sanita, Natl Ctr Radiat Protect & Computat Phys, I-00161 Rome, Italy
[2] Tor Vergata Univ Rome, Dept Phys, I-00133 Rome, Italy
[3] Tor Vergata Univ Rome, Dept Phys & INFN, I-00133 Rome, Italy
[4] Ctr Ric E Fermi, I-00184 Rome, Italy
基金
欧盟地平线“2020”;
关键词
ASYNCHRONOUS STATES; POPULATION; MODEL; OSCILLATIONS;
D O I
10.1103/PhysRevLett.130.097402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Despite the huge number of neurons composing a brain network, ongoing activity of local cell assemblies is intrinsically stochastic. Fluctuations in their instantaneous rate of spike firing nu(t) scale with the size of the assembly and persist in isolated networks, i.e., in the absence of external sources of noise. Although deterministic chaos due to the quenched disorder of the synaptic couplings underlies this seemingly stochastic dynamics, an effective theory for the network dynamics of a finite assembly of spiking neurons is lacking. Here, we fill this gap by extending the so-called population density approach including an activity-and size-dependent stochastic source in the Fokker-Planck equation for the membrane potential density. The finite-size noise embedded in this stochastic partial derivative equation is analytically characterized leading to a self-consistent and nonperturbative description of nu(t) valid for a wide class of spiking neuron networks. Power spectra of nu(t) are found in excellent agreement with those from detailed simulations both in the linear regime and across a synchronization phase transition, when a size-dependent smearing of the critical dynamics emerges.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Comment on the paper "Finite-size scaling from the self-consistent theory of localization" by I. M. Suslov
    Markos, P.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2012, 115 (06) : 1075 - 1078
  • [12] Self-organized collective oscillations in networks of stochastic spiking neurons
    Chen, Lei
    Yu, Chaojun
    Zhai, Jian
    CHAOS, 2023, 33 (02)
  • [13] Self-Organized Supercriticality and Oscillations in Networks of Stochastic Spiking Neurons
    Costa, Ariadne A.
    Brochini, Ludmila
    Kinouchi, Osame
    ENTROPY, 2017, 19 (08):
  • [14] Universal dynamics of mitochondrial networks: a finite-size scaling analysis
    Nahuel Zamponi
    Emiliano Zamponi
    Sergio A. Cannas
    Dante R. Chialvo
    Scientific Reports, 12
  • [15] Universal dynamics of mitochondrial networks: a finite-size scaling analysis
    Zamponi, Nahuel
    Zamponi, Emiliano
    Cannas, Sergio A.
    Chialvo, Dante R.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [16] Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons
    Buesing, Lars
    Bill, Johannes
    Nessler, Bernhard
    Maass, Wolfgang
    PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (11)
  • [17] Phase transitions and self-organized criticality in networks of stochastic spiking neurons
    Ludmila Brochini
    Ariadne de Andrade Costa
    Miguel Abadi
    Antônio C. Roque
    Jorge Stolfi
    Osame Kinouchi
    Scientific Reports, 6
  • [18] Emergent Oscillations in Networks of Stochastic Spiking Neurons
    Wallace, Edward
    Benayoun, Marc
    van Drongelen, Wim
    Cowan, Jack D.
    PLOS ONE, 2011, 6 (05):
  • [19] Phase transitions and self-organized criticality in networks of stochastic spiking neurons
    Brochini, Ludmila
    Costa, Ariadne de Andrade
    Abadi, Miguel
    Roque, Antonio C.
    Stolfi, Jorge
    Kinouchi, Osame
    SCIENTIFIC REPORTS, 2016, 6
  • [20] Temporal correlations in Stochastic networks of spiking neurons
    Meyer, C
    van Vreeswijk, C
    NEURAL COMPUTATION, 2002, 14 (02) : 369 - 404