Evaluation of polygenic risk scores to differentiate between type 1 and type 2 diabetes

被引:5
作者
Shoaib, Muhammad [1 ,2 ]
Ye, Qiang [1 ,2 ]
IglayReger, Heidi [3 ]
Tan, Meng H. [4 ]
Boehnke, Michael [5 ,6 ]
Burant, Charles F. [3 ]
Soleimanpour, Scott A. [3 ,7 ]
Taliun, Sarah A. Gagliano A. [1 ,8 ,9 ,10 ]
机构
[1] Montreal Heart Inst Res Ctr, Montreal, PQ, Canada
[2] Univ Montreal, Montreal, PQ, Canada
[3] Univ Michigan, Dept Internal Med, Ann Arbor, MI USA
[4] Univ Michigan, Dept Internal Med, Div Metab Endocrinol & Diabet, Ann Arbor, MI USA
[5] Univ Michigan, Dept Biostat, Ann Arbor, MI USA
[6] Univ Michigan, Ctr Stat Genet, Ann Arbor, MI USA
[7] Univ Michigan, Dept Mol & Integrat Physiol, Ann Arbor, MI USA
[8] Univ Montreal, Dept Med, Montreal, PQ, Canada
[9] Univ Montreal, Dept Neurosci, Montreal, PQ, Canada
[10] Montreal Heart Res Ctr, 5000 Rue Belanger, Montreal, PQ H1T 1C8, Canada
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
GWAS; polygenic risk scores; type; 1; diabetes; 2; UK Biobank; GENOME-WIDE ASSOCIATION; PATHOPHYSIOLOGY; MELLITUS; LOCI;
D O I
10.1002/gepi.22521
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Polygenic risk scores (PRS) quantify the genetic liability to disease and are calculated using an individual's genotype profile and disease-specific genome-wide association study (GWAS) summary statistics. Type 1 (T1D) and type 2 (T2D) diabetes both are determined in part by genetic loci. Correctly differentiating between types of diabetes is crucial for accurate diagnosis and treatment. PRS have the potential to address possible misclassification of T1D and T2D. Here we evaluated PRS models for T1D and T2D in European genetic ancestry participants from the UK Biobank (UKB) and then in the Michigan Genomics Initiative (MGI). Specifically, we investigated the utility of T1D and T2D PRS to discriminate between T1D, T2D, and controls in unrelated UKB individuals of European ancestry. We derived PRS models using external non-UKB GWAS. The T1D PRS model with the best discrimination between T1D cases and controls (area under the receiver operator curve [AUC] = 0.805) also yielded the best discrimination of T1D from T2D cases in the UKB (AUC = 0.792) and separation in MGI (AUC = 0.686). In contrast, the best T2D model did not discriminate between T1D and T2D cases (AUC = 0.527). Our analysis suggests that a T1D PRS model based on independent single nucleotide polymorphisms may help differentiate between T1D, T2D, and controls in individuals of European genetic ancestry.
引用
收藏
页码:303 / 313
页数:11
相关论文
共 28 条
[21]   pROC: an open-source package for R and S plus to analyze and compare ROC curves [J].
Robin, Xavier ;
Turck, Natacha ;
Hainard, Alexandre ;
Tiberti, Natalia ;
Lisacek, Frederique ;
Sanchez, Jean-Charles ;
Mueller, Markus .
BMC BIOINFORMATICS, 2011, 12
[22]   An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans [J].
Scott, Robert A. ;
Scott, Laura J. ;
Maegi, Reedik ;
Marullo, Letizia ;
Gaulton, Kyle J. ;
Kaakinen, Marika ;
Pervjakova, Natalia ;
Pers, Tune H. ;
Johnson, Andrew D. ;
Eicher, John D. ;
Jackson, Anne U. ;
Ferreira, Teresa ;
Lee, Yeji ;
Ma, Clement ;
Steinthorsdottir, Valgerdur ;
Thorleifsson, Gudmar ;
Qi, Lu ;
Van Zuydam, Natalie R. ;
Mahajan, Anubha ;
Chen, Han ;
Almgren, Peter ;
Voight, Ben F. ;
Grallert, Harald ;
Mueller-Nurasyid, Martina ;
Ried, Janina S. ;
Rayner, Nigel W. ;
Robertson, Neil ;
Karssen, Lennart C. ;
Van Leeuwen, Elisabeth M. ;
Willems, Sara M. ;
Fuchsberger, Christian ;
Kwan, Phoenix ;
Teslovich, Tanya M. ;
Chanda, Pritam ;
Li, Man ;
Lu, Yingchang ;
Dina, Christian ;
Thuillier, Dorothee ;
Yengo, Loic ;
Jiang, Longda ;
Sparso, Thomas ;
Kestler, Hans A. ;
Chheda, Himanshu ;
Eisele, Lewin ;
Gustafsson, Stefan ;
Franberg, Mattias ;
Strawbridge, Rona J. ;
Benediktsson, Rafn ;
Hreidarsson, Astradur B. ;
Kong, Augustine .
DIABETES, 2017, 66 (11) :2888-2902
[23]   Type 1 Diabetes and the HLA Region: Genetic Association Besides Classical HLA Class II Genes [J].
Sticht, Jana ;
Alvaro-Benito, Miguel ;
Konigorski, Stefan .
FRONTIERS IN GENETICS, 2021, 12
[24]   UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age [J].
Sudlow, Cathie ;
Gallacher, John ;
Allen, Naomi ;
Beral, Valerie ;
Burton, Paul ;
Danesh, John ;
Downey, Paul ;
Elliott, Paul ;
Green, Jane ;
Landray, Martin ;
Liu, Bette ;
Matthews, Paul ;
Ong, Giok ;
Pell, Jill ;
Silman, Alan ;
Young, Alan ;
Sprosen, Tim ;
Peakman, Tim ;
Collins, Rory .
PLOS MEDICINE, 2015, 12 (03)
[25]   Frequency and phenotype of type 1 diabetes in the first six decades of life: a cross-sectional, genetically stratified survival analysis from UK Biobank [J].
Thomas, Nicholas J. ;
Jones, Samuel E. ;
Weedon, Michael N. ;
Shields, Beverley M. ;
Oram, Richard A. ;
Hattersley, Andrew T. .
LANCET DIABETES & ENDOCRINOLOGY, 2018, 6 (02) :122-129
[26]   From Basic Science to Clinical Application of Polygenic Risk Scores A Primer [J].
Wray, Naomi R. ;
Lin, Tian ;
Austin, Jehannine ;
McGrath, John J. ;
Hickie, Ian B. ;
Murray, Graham K. ;
Visscher, Peter M. .
JAMA PSYCHIATRY, 2021, 78 (01) :101-109
[27]   Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective [J].
Zaccardi, Francesco ;
Webb, David R. ;
Yates, Thomas ;
Davies, Melanie J. .
POSTGRADUATE MEDICAL JOURNAL, 2016, 92 (1084) :63-69
[28]   The Michigan Genomics Initiative: A biobank linking genotypes and electronic clinical records in Michigan Medicine patients [J].
Zawistowski, Matthew ;
Fritsche, Lars G. ;
Pandit, Anita ;
Vanderwerff, Brett ;
Patil, Snehal ;
Schmidt, Ellen M. ;
VandeHaar, Peter ;
Willer, Cristen J. ;
Brummett, Chad M. ;
Kheterpal, Sachin ;
Zhou, Xiang ;
Boehnke, Michael ;
Abecasis, Goncalo R. ;
Zollner, Sebastian .
CELL GENOMICS, 2023, 3 (02)