Evaluation of polygenic risk scores to differentiate between type 1 and type 2 diabetes

被引:5
作者
Shoaib, Muhammad [1 ,2 ]
Ye, Qiang [1 ,2 ]
IglayReger, Heidi [3 ]
Tan, Meng H. [4 ]
Boehnke, Michael [5 ,6 ]
Burant, Charles F. [3 ]
Soleimanpour, Scott A. [3 ,7 ]
Taliun, Sarah A. Gagliano A. [1 ,8 ,9 ,10 ]
机构
[1] Montreal Heart Inst Res Ctr, Montreal, PQ, Canada
[2] Univ Montreal, Montreal, PQ, Canada
[3] Univ Michigan, Dept Internal Med, Ann Arbor, MI USA
[4] Univ Michigan, Dept Internal Med, Div Metab Endocrinol & Diabet, Ann Arbor, MI USA
[5] Univ Michigan, Dept Biostat, Ann Arbor, MI USA
[6] Univ Michigan, Ctr Stat Genet, Ann Arbor, MI USA
[7] Univ Michigan, Dept Mol & Integrat Physiol, Ann Arbor, MI USA
[8] Univ Montreal, Dept Med, Montreal, PQ, Canada
[9] Univ Montreal, Dept Neurosci, Montreal, PQ, Canada
[10] Montreal Heart Res Ctr, 5000 Rue Belanger, Montreal, PQ H1T 1C8, Canada
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
GWAS; polygenic risk scores; type; 1; diabetes; 2; UK Biobank; GENOME-WIDE ASSOCIATION; PATHOPHYSIOLOGY; MELLITUS; LOCI;
D O I
10.1002/gepi.22521
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Polygenic risk scores (PRS) quantify the genetic liability to disease and are calculated using an individual's genotype profile and disease-specific genome-wide association study (GWAS) summary statistics. Type 1 (T1D) and type 2 (T2D) diabetes both are determined in part by genetic loci. Correctly differentiating between types of diabetes is crucial for accurate diagnosis and treatment. PRS have the potential to address possible misclassification of T1D and T2D. Here we evaluated PRS models for T1D and T2D in European genetic ancestry participants from the UK Biobank (UKB) and then in the Michigan Genomics Initiative (MGI). Specifically, we investigated the utility of T1D and T2D PRS to discriminate between T1D, T2D, and controls in unrelated UKB individuals of European ancestry. We derived PRS models using external non-UKB GWAS. The T1D PRS model with the best discrimination between T1D cases and controls (area under the receiver operator curve [AUC] = 0.805) also yielded the best discrimination of T1D from T2D cases in the UKB (AUC = 0.792) and separation in MGI (AUC = 0.686). In contrast, the best T2D model did not discriminate between T1D and T2D cases (AUC = 0.527). Our analysis suggests that a T1D PRS model based on independent single nucleotide polymorphisms may help differentiate between T1D, T2D, and controls in individuals of European genetic ancestry.
引用
收藏
页码:303 / 313
页数:11
相关论文
共 28 条
[1]   Two Single Nucleotide Polymorphisms Identify the Highest-Risk Diabetes HLA Genotype Potential for Rapid Screening [J].
Barker, Jennifer M. ;
Triolo, Taylor M. ;
Aly, Theresa A. ;
Baschal, Erin E. ;
Babu, Sunanda R. ;
Kretowski, Adam ;
Rewers, Marian J. ;
Eisenbarth, George S. .
DIABETES, 2008, 57 (11) :3152-3155
[2]   Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes [J].
Barrett, Jeffrey C. ;
Clayton, David G. ;
Concannon, Patrick ;
Akolkar, Beena ;
Cooper, Jason D. ;
Erlich, Henry A. ;
Julier, Cecile ;
Morahan, Grant ;
Nerup, Jorn ;
Nierras, Concepcion ;
Plagnol, Vincent ;
Pociot, Flemming ;
Schuilenburg, Helen ;
Smyth, Deborah J. ;
Stevens, Helen ;
Todd, John A. ;
Walker, Neil M. ;
Rich, Stephen S. .
NATURE GENETICS, 2009, 41 (06) :703-707
[3]   The UK Biobank resource with deep phenotyping and genomic data [J].
Bycroft, Clare ;
Freeman, Colin ;
Petkova, Desislava ;
Band, Gavin ;
Elliott, Lloyd T. ;
Sharp, Kevin ;
Motyer, Allan ;
Vukcevic, Damjan ;
Delaneau, Olivier ;
O'Connell, Jared ;
Cortes, Adrian ;
Welsh, Samantha ;
Young, Alan ;
Effingham, Mark ;
McVean, Gil ;
Leslie, Stephen ;
Allen, Naomi ;
Donnelly, Peter ;
Marchini, Jonathan .
NATURE, 2018, 562 (7726) :203-+
[4]   R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment [J].
Carroll, Robert J. ;
Bastarache, Lisa ;
Denny, Joshua C. .
BIOINFORMATICS, 2014, 30 (16) :2375-2376
[5]   Tutorial: a guide to performing polygenic risk score analyses [J].
Choi, Shing Wan ;
Mak, Timothy Shin-Heng ;
O'Reilly, Paul F. .
NATURE PROTOCOLS, 2020, 15 (09) :2759-2772
[6]   PRSice-2: Polygenic Risk Score software for biobank-scale data [J].
Choi, Shing Wan ;
O'Reilly, Paul F. .
GIGASCIENCE, 2019, 8 (07)
[7]  
Cooper N.J., 2017, bioRxiv, P120022, DOI DOI 10.1101/120022
[8]   A method of identifying and correcting miscoding, misclassification and misdiagnosis in diabetes: a pilot and validation study of routinely collected data [J].
de Lusignan, S. ;
Khunti, K. ;
Belsey, J. ;
Hattersley, A. ;
van Vlymen, J. ;
Gallagher, H. ;
Millett, C. ;
Hague, N. J. ;
Tomson, C. ;
Harris, K. ;
Majeed, A. .
DIABETIC MEDICINE, 2010, 27 (02) :203-209
[9]   Type 1 Diabetes: Current Concepts in Epidemiology, Pathophysiology, Clinical Care, and Research [J].
Gan, Mary Joyce ;
Albanese-O'Neill, Anastasia ;
Haller, Michael J. .
CURRENT PROBLEMS IN PEDIATRIC AND ADOLESCENT HEALTH CARE, 2012, 42 (10) :269-291
[10]   Global trends in diabetes complications: a review of current evidence [J].
Harding, Jessica L. ;
Pavkov, Meda E. ;
Magliano, Dianna J. ;
Shaw, Jonathan E. ;
Gregg, Edward W. .
DIABETOLOGIA, 2019, 62 (01) :3-16