Reinforcing Native Solid-Electrolyte Interphase Layers via Electrolyte-Swellable Soft-Scaffold for Lithium Metal Anode

被引:19
作者
Bae, Jaehyeong [1 ,2 ,3 ]
Choi, Keonwoo [4 ]
Song, Hyunsub [1 ]
Kim, Do Heung [4 ]
Youn, Doo Young [1 ]
Cho, Su-Ho [1 ]
Jeon, Dogyeong [1 ]
Lee, Jiyoung [1 ]
Lee, Junyoung [1 ]
Jang, Wontae [4 ]
Lee, Changhyeon [4 ]
Kim, Youson [4 ]
Kim, Chanhoon [5 ]
Jung, Ji-Won [6 ]
Im, Sung Gap [4 ,7 ]
Kim, Il-Doo [1 ,7 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Kyung Hee Univ, Coll Engn, Dept Chem Engn, 1732 Deogyeong Daero, Yongin 17104, Gyeonggi Do, South Korea
[3] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[4] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[5] Korea Inst Ind Technol KITECH, Sustainable Technol & Wellness R&D Grp, 102 Jejudaehak Ro, Jeju si 63243, Jeju do, South Korea
[6] Univ Ulsan, Sch Mat Sci & Engn, 12 Techno Saneop Ro 55 Beon Gil, Ulsan 44776, South Korea
[7] Korea Adv Inst Sci & Technol, KAIST Inst NanoCentury, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
electrolyte solvogels; electrolyte-swellable polymers; initiated CVD; lithium dendrites; lithium-metal battery anodes; solid-electrolyte interphase layer; transference number; MECHANICAL-PROPERTIES; SURFACE; ULTRATHIN;
D O I
10.1002/aenm.202203818
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The lithium metal anode is notoriously unstable and reactive to electrolytes, forming brittle solid-electrolyte interphase (SEI) layers with uneven distribution, exacerbating Li dendrites that ultimately limit the battery life. Here, this work passivates Li metal with electrolyte-swellable polymer nanolayers deposited monolithically by the initiated chemical vapor deposition (iCVD) to reinforce the native SEI layers and stabilize their interface. The 100 nm iCVD poly(dimethylaminomethyl styrene) (pDMAMS) layer is swelled by 264% under a carbonate electrolyte, establishing the electrolyte-filled soft scaffold for Li-ion transport. Notably, the solvogel accommodates homogeneous Li2O-free and Li2CO3-rich native SEI layers, providing a record-high Li-ion transference number of 0.95 and ionic conductivity of 6.54 mS cm(-1). The developed pDMAMS-Li anodes extend the cycle life by 550% in Li-Li symmetric cells and 600% in LiNi0.6Mn0.2Co0.2O2 full cells compared to pristine Li metal. The mechanistic details of the swollen-soft-scaffold strategy are elucidated by depth profile analysis of the pDMAMS homopolymer compared to pDMAMS/electrolyte-phobic copolymers, providing new insights to manage the interface of liquid-state electrolyte and solid-state Li metal by using a novel class of bifunctional solvogel.
引用
收藏
页数:12
相关论文
共 50 条
[41]   Integrated lithium metal anode protected by composite solid electrolyte film enables stable quasi-solid-state lithium metal batteries [J].
Ding, Junfan ;
Xu, Rui ;
Yan, Chong ;
Xiao, Ye ;
Liang, Yeru ;
Yuan, Hong ;
Huang, Jiaqi .
CHINESE CHEMICAL LETTERS, 2020, 31 (09) :2339-2342
[42]   Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries [J].
Wondimkun, Zewdu Tadesse ;
Beyene, Tamene Tadesse ;
Weret, Misganaw Adigo ;
Sahalie, Niguse Aweke ;
Huang, Chen-Jui ;
Thirumalraj, Balamurugan ;
Jote, Bikila Alemu ;
Wang, Daoyi ;
Su, Wei-Nien ;
Wang, Chia-Hsin ;
Brunklaus, Gunther ;
Winter, Martin ;
Hwang, Bing-Joe .
JOURNAL OF POWER SOURCES, 2020, 450
[43]   Investigating the effect of a fluoroethylene carbonate additive on lithium deposition and the solid electrolyte interphase in lithium metal batteries usingin situNMR spectroscopy [J].
Gunnarsdottir, Anna B. ;
Vema, Sundeep ;
Menkin, Svetlana ;
Marbella, Lauren E. ;
Grey, Clare P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (30) :14975-14992
[44]   Tailoring the Solid Electrolyte Interphase Composition on Lithium Metal Anodes by the Choice of Ionic Liquid during Mechanochemical Modification [J].
Wellmann, Julia ;
Hepp, Marco ;
Ogolla, Charles Otieno ;
Mohrhardt, Marvin ;
Wankmiller, Bjoern ;
Lennartz, Peter ;
Rodehorst, Uta ;
Hansen, Michael Ryan ;
Winter, Martin ;
Brunklaus, Gunther ;
Butz, Benjamin ;
Paillard, Elie .
ADVANCED MATERIALS INTERFACES, 2025, 12 (11)
[45]   Stabilizing lithium metal anodes with solid electrolyte interphase by embedding two-dimensional C3N4/Graphyne as protective layers [J].
Lin, Yu ;
Gu, Xiao .
CHEMICAL PHYSICS LETTERS, 2023, 824
[46]   In situ crosslinked hybrid aluminum polymer film for high-performance solid electrolyte interphase of lithium metal battery [J].
Li, Dandan ;
Wei, Zhaoyang ;
Lei, Weiwei ;
You, Jun ;
Liu, Jie ;
Yang, Yingkui ;
Shi, Dean .
JOURNAL OF POWER SOURCES, 2023, 563
[47]   Collaborative Assembly of a Fluorine-Enriched Heterostructured Solid Electrolyte Interphase for Ultralong-Life Lithium Metal Batteries [J].
Zhang, Yu ;
Liu, Yue ;
Tan, Liguo ;
Zhou, Junjie ;
Ding, Fei ;
Wang, Siyang ;
Li, Minghao ;
Li, Hang ;
Yi, Chenyi .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (38) :43917-43925
[48]   Molecularly Engineered Artificial Solid Electrolyte Interphase with Tailored Lithiophilicity and Solvent-Phobicity for Stable Lithium Metal Batteries [J].
Jeong, Yeong Hun ;
Won, Gwangbin ;
Kim, Seunghyeon ;
Jeong, Daun ;
Kwon, Da-Sol ;
Yong, Da Kyoung ;
Choi, Jaehyuk ;
Ahn, Hyun Woo ;
Kim, Sulkyung ;
Lim, Miso ;
Shim, Jimin .
SMALL, 2025, 21 (24)
[49]   Unraveling the multilayer solid-electrolyte interphase in lithium batteries through depth-sensitive plasmon-enhanced Raman spectroscopy: A theoretical and experimental study [J].
You, En-Ming ;
Gu, Yu ;
Yi, Jun ;
Wu, De-Yin ;
Li, Jian-Feng ;
Tian, Zhong-Qun .
ELECTROCHIMICA ACTA, 2024, 498
[50]   Effects of Butadiene Sulfone as an Electrolyte Additive on the Formation of Solid Electrolyte Interphase in Lithium-Ion Batteries Based on Li4Ti5O12 Anode Materials [J].
Kung, Yu-Ruei ;
Li, Cheng-Yao ;
Hasin, Panitat ;
Su, Chia-Hung ;
Lin, Jeng-Yu .
POLYMERS, 2023, 15 (08)