Reinforcing Native Solid-Electrolyte Interphase Layers via Electrolyte-Swellable Soft-Scaffold for Lithium Metal Anode

被引:19
作者
Bae, Jaehyeong [1 ,2 ,3 ]
Choi, Keonwoo [4 ]
Song, Hyunsub [1 ]
Kim, Do Heung [4 ]
Youn, Doo Young [1 ]
Cho, Su-Ho [1 ]
Jeon, Dogyeong [1 ]
Lee, Jiyoung [1 ]
Lee, Junyoung [1 ]
Jang, Wontae [4 ]
Lee, Changhyeon [4 ]
Kim, Youson [4 ]
Kim, Chanhoon [5 ]
Jung, Ji-Won [6 ]
Im, Sung Gap [4 ,7 ]
Kim, Il-Doo [1 ,7 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Kyung Hee Univ, Coll Engn, Dept Chem Engn, 1732 Deogyeong Daero, Yongin 17104, Gyeonggi Do, South Korea
[3] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[4] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[5] Korea Inst Ind Technol KITECH, Sustainable Technol & Wellness R&D Grp, 102 Jejudaehak Ro, Jeju si 63243, Jeju do, South Korea
[6] Univ Ulsan, Sch Mat Sci & Engn, 12 Techno Saneop Ro 55 Beon Gil, Ulsan 44776, South Korea
[7] Korea Adv Inst Sci & Technol, KAIST Inst NanoCentury, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
electrolyte solvogels; electrolyte-swellable polymers; initiated CVD; lithium dendrites; lithium-metal battery anodes; solid-electrolyte interphase layer; transference number; MECHANICAL-PROPERTIES; SURFACE; ULTRATHIN;
D O I
10.1002/aenm.202203818
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The lithium metal anode is notoriously unstable and reactive to electrolytes, forming brittle solid-electrolyte interphase (SEI) layers with uneven distribution, exacerbating Li dendrites that ultimately limit the battery life. Here, this work passivates Li metal with electrolyte-swellable polymer nanolayers deposited monolithically by the initiated chemical vapor deposition (iCVD) to reinforce the native SEI layers and stabilize their interface. The 100 nm iCVD poly(dimethylaminomethyl styrene) (pDMAMS) layer is swelled by 264% under a carbonate electrolyte, establishing the electrolyte-filled soft scaffold for Li-ion transport. Notably, the solvogel accommodates homogeneous Li2O-free and Li2CO3-rich native SEI layers, providing a record-high Li-ion transference number of 0.95 and ionic conductivity of 6.54 mS cm(-1). The developed pDMAMS-Li anodes extend the cycle life by 550% in Li-Li symmetric cells and 600% in LiNi0.6Mn0.2Co0.2O2 full cells compared to pristine Li metal. The mechanistic details of the swollen-soft-scaffold strategy are elucidated by depth profile analysis of the pDMAMS homopolymer compared to pDMAMS/electrolyte-phobic copolymers, providing new insights to manage the interface of liquid-state electrolyte and solid-state Li metal by using a novel class of bifunctional solvogel.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Gradient Solid Electrolyte Interphase and Lithium-Ion Solvation Regulated by Bisfluoroacetamide for Stable Lithium Metal Batteries [J].
Li, Fang ;
He, Jian ;
Liu, Jiandong ;
Wu, Mingguang ;
Hou, Yuyang ;
Wang, Huaping ;
Qi, Shihan ;
Liu, Quanhui ;
Hu, Jiawen ;
Ma, Jianmin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (12) :6600-6608
[32]   Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries [J].
Cheng, Xin-Bing ;
Peng, Hong-Jie ;
Huang, Jia-Qi ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
ACS NANO, 2015, 9 (06) :6373-6382
[33]   Evaluation of the Solid-Electrolyte Interphase Formed in the Carbonate-Based Electrolytes with Different Lithium Salts Using the Redox Probe Method [J].
Katayama, Yasushi ;
Okazaki, Sho ;
Serizawa, Nobuyuki .
ELECTROCHEMISTRY, 2025, 93 (06)
[34]   Resolving nanostructure and chemistry of solid-electrolyte interphase on lithium anodes by depth-sensitive plasmon-enhanced Raman spectroscopy [J].
Gu, Yu ;
You, En-Ming ;
Lin, Jian-De ;
Wang, Jun-Hao ;
Luo, Si-Heng ;
Zhou, Ru-Yu ;
Zhang, Chen-Jie ;
Yao, Jian-Lin ;
Li, Hui-Yang ;
Li, Gen ;
Wang, Wei-Wei ;
Qiao, Yu ;
Yan, Jia-Wei ;
Wu, De-Yin ;
Liu, Guo-Kun ;
Zhang, Li ;
Li, Jian-Feng ;
Xu, Rong ;
Tian, Zhong-Qun ;
Cui, Yi ;
Mao, Bing-Wei .
NATURE COMMUNICATIONS, 2023, 14 (01)
[35]   Transition metal speciation as a degradation mechanism with the formation of a solid-electrolyte interphase (SEI) in Ni-rich transition metal oxide cathodes [J].
Kim, Taehoon ;
Ono, Luis K. ;
Fleck, Nicole ;
Raga, Sonia R. ;
Qi, Yabing .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (29) :14449-14463
[36]   Predicting Calendar Aging in Lithium Metal Secondary Batteries: The Impacts of Solid Electrolyte Interphase Composition and Stability [J].
Wood, Sean M. ;
Fang, Chengcheng ;
Dufek, Eric J. ;
Nagpure, Shrikant C. ;
Sazhin, Sergiy V. ;
Liaw, Boryann ;
Meng, Y. Shirley .
ADVANCED ENERGY MATERIALS, 2018, 8 (26)
[37]   A systematic implementation of the solid electrolyte interphase layer and study of its impact on lithium plating morphology in lithium metal batteries [J].
Morey, Madison ;
Lobel, Maya ;
Ryan, Emily .
JOURNAL OF ENERGY STORAGE, 2025, 122
[38]   A Brief Review on Solid Electrolyte Interphase Composition Characterization Technology for Lithium Metal Batteries: Challenges and Perspectives [J].
Shan, Xinyi ;
Zhong, Yu ;
Zhang, Lingjie ;
Zhang, Yongqi ;
Xia, Xinhui ;
Wang, Xiuli ;
Tu, Jiangping .
JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (35) :19060-19080
[39]   Dynamic construction of a composite solid electrolyte interphase for dendrite-free lithium metal batteries via lithium-antimony self-alloying [J].
Min, Byeong Chan ;
Park, Jung Been ;
Choi, Changhoon ;
Kim, Dong-Wan .
ADVANCED COMPOSITES AND HYBRID MATERIALS, 2025, 8 (01)
[40]   Integrated lithium metal anode protected by composite solid electrolyte film enables stable quasi-solid-state lithium metal batteries [J].
Ding, Junfan ;
Xu, Rui ;
Yan, Chong ;
Xiao, Ye ;
Liang, Yeru ;
Yuan, Hong ;
Huang, Jiaqi .
CHINESE CHEMICAL LETTERS, 2020, 31 (09) :2339-2342