Reinforcing Native Solid-Electrolyte Interphase Layers via Electrolyte-Swellable Soft-Scaffold for Lithium Metal Anode

被引:19
作者
Bae, Jaehyeong [1 ,2 ,3 ]
Choi, Keonwoo [4 ]
Song, Hyunsub [1 ]
Kim, Do Heung [4 ]
Youn, Doo Young [1 ]
Cho, Su-Ho [1 ]
Jeon, Dogyeong [1 ]
Lee, Jiyoung [1 ]
Lee, Junyoung [1 ]
Jang, Wontae [4 ]
Lee, Changhyeon [4 ]
Kim, Youson [4 ]
Kim, Chanhoon [5 ]
Jung, Ji-Won [6 ]
Im, Sung Gap [4 ,7 ]
Kim, Il-Doo [1 ,7 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Kyung Hee Univ, Coll Engn, Dept Chem Engn, 1732 Deogyeong Daero, Yongin 17104, Gyeonggi Do, South Korea
[3] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[4] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[5] Korea Inst Ind Technol KITECH, Sustainable Technol & Wellness R&D Grp, 102 Jejudaehak Ro, Jeju si 63243, Jeju do, South Korea
[6] Univ Ulsan, Sch Mat Sci & Engn, 12 Techno Saneop Ro 55 Beon Gil, Ulsan 44776, South Korea
[7] Korea Adv Inst Sci & Technol, KAIST Inst NanoCentury, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
electrolyte solvogels; electrolyte-swellable polymers; initiated CVD; lithium dendrites; lithium-metal battery anodes; solid-electrolyte interphase layer; transference number; MECHANICAL-PROPERTIES; SURFACE; ULTRATHIN;
D O I
10.1002/aenm.202203818
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The lithium metal anode is notoriously unstable and reactive to electrolytes, forming brittle solid-electrolyte interphase (SEI) layers with uneven distribution, exacerbating Li dendrites that ultimately limit the battery life. Here, this work passivates Li metal with electrolyte-swellable polymer nanolayers deposited monolithically by the initiated chemical vapor deposition (iCVD) to reinforce the native SEI layers and stabilize their interface. The 100 nm iCVD poly(dimethylaminomethyl styrene) (pDMAMS) layer is swelled by 264% under a carbonate electrolyte, establishing the electrolyte-filled soft scaffold for Li-ion transport. Notably, the solvogel accommodates homogeneous Li2O-free and Li2CO3-rich native SEI layers, providing a record-high Li-ion transference number of 0.95 and ionic conductivity of 6.54 mS cm(-1). The developed pDMAMS-Li anodes extend the cycle life by 550% in Li-Li symmetric cells and 600% in LiNi0.6Mn0.2Co0.2O2 full cells compared to pristine Li metal. The mechanistic details of the swollen-soft-scaffold strategy are elucidated by depth profile analysis of the pDMAMS homopolymer compared to pDMAMS/electrolyte-phobic copolymers, providing new insights to manage the interface of liquid-state electrolyte and solid-state Li metal by using a novel class of bifunctional solvogel.
引用
收藏
页数:12
相关论文
共 50 条
[21]   Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: The role of polysulfides on lithium anode [J].
Yan, Chong ;
Cheng, Xin-Bing ;
Zhao, Chen-Zi ;
Huang, Jia-Qi ;
Yang, Shu-Ting ;
Zhang, Qiang .
JOURNAL OF POWER SOURCES, 2016, 327 :212-220
[22]   Chemomechanical Simulation of LiF-Rich Solid-Electrolyte Interphase Formed from Fluoroethylene Carbonate on a Silicon Anode [J].
Kamikawa, Yuki ;
Amezawa, Koji ;
Terada, Kenjiro .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (04) :3231-3239
[23]   Chemically soft solid electrolyte interphase forming additives for lithium-ion batteries [J].
Jankowski, Piotr ;
Poterala, Marcin ;
Lindahl, Niklas ;
Wieczorek, Wladyslaw ;
Johansson, Patrik .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (45) :22609-22618
[24]   Insights into solid electrolyte interphase formation on alternative anode materials in lithium-ion batteries [J].
Steinhauer, Miriam ;
Diemant, Thomas ;
Heim, Christopher ;
Behm, R. Juergen ;
Wagner, Norbert ;
Friedrich, K. Andreas .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2017, 47 (02) :249-259
[25]   Introducing Artificial Solid Electrolyte Interphase onto the Anode of Aqueous Lithium Energy Storage Systems [J].
Ahmed, Moin ;
Yazdi, Alireza Zehtab ;
Mitha, Aly ;
Chen, P. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (36) :30348-30356
[26]   Modification of Nitrate Ion Enables Stable Solid Electrolyte Interphase in Lithium Metal Batteries [J].
Hou, Li-Peng ;
Yao, Nan ;
Xie, Jin ;
Shi, Peng ;
Sun, Shu-Yu ;
Jin, Cheng-Bin ;
Chen, Cheng-Meng ;
Liu, Quan-Bing ;
Li, Bo-Quan ;
Zhang, Xue-Qiang ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (20)
[27]   A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes [J].
Li, Nian-Wu ;
Shi, Yang ;
Yin, Ya-Xia ;
Zeng, Xian-Xiang ;
Li, Jin-Yi ;
Li, Cong-Ju ;
Wan, Li-Jun ;
Wen, Rui ;
Guo, Yu-Guo .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (06) :1505-1509
[28]   Fine-tuned molecular design toward a stable solid electrolyte interphase on a lithium metal anode from in silico simulation [J].
Ma, Bingyun ;
Liu, Yue ;
Sun, Qintao ;
Yu, Peiping ;
Xu, Liang ;
Yang, Hao ;
Xie, Miao ;
Cheng, Tao .
MATERIALS TODAY CHEMISTRY, 2023, 33
[29]   Formation and Breakdown of the Solid-electrolyte Interphase in a Bis(fluorosulfonyl)amide-based Ionic Liquid in the Presence of Lithium Ion [J].
Okazaki, Sho ;
Serizawa, Nobuyuki ;
Katayama, Yasushi .
ELECTROCHEMISTRY, 2024, 92 (04)
[30]   Multiphysics modeling of lithium ion battery capacity fading process with solid-electrolyte interphase growth by elementary reaction kinetics [J].
Xie, Yuanyuan ;
Li, Jianyang ;
Yuan, Chris .
JOURNAL OF POWER SOURCES, 2014, 248 :172-179