Reinforcing Native Solid-Electrolyte Interphase Layers via Electrolyte-Swellable Soft-Scaffold for Lithium Metal Anode

被引:11
作者
Bae, Jaehyeong [1 ,2 ,3 ]
Choi, Keonwoo [4 ]
Song, Hyunsub [1 ]
Kim, Do Heung [4 ]
Youn, Doo Young [1 ]
Cho, Su-Ho [1 ]
Jeon, Dogyeong [1 ]
Lee, Jiyoung [1 ]
Lee, Junyoung [1 ]
Jang, Wontae [4 ]
Lee, Changhyeon [4 ]
Kim, Youson [4 ]
Kim, Chanhoon [5 ]
Jung, Ji-Won [6 ]
Im, Sung Gap [4 ,7 ]
Kim, Il-Doo [1 ,7 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Kyung Hee Univ, Coll Engn, Dept Chem Engn, 1732 Deogyeong Daero, Yongin 17104, Gyeonggi Do, South Korea
[3] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[4] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[5] Korea Inst Ind Technol KITECH, Sustainable Technol & Wellness R&D Grp, 102 Jejudaehak Ro, Jeju si 63243, Jeju do, South Korea
[6] Univ Ulsan, Sch Mat Sci & Engn, 12 Techno Saneop Ro 55 Beon Gil, Ulsan 44776, South Korea
[7] Korea Adv Inst Sci & Technol, KAIST Inst NanoCentury, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
electrolyte solvogels; electrolyte-swellable polymers; initiated CVD; lithium dendrites; lithium-metal battery anodes; solid-electrolyte interphase layer; transference number; MECHANICAL-PROPERTIES; SURFACE; ULTRATHIN;
D O I
10.1002/aenm.202203818
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The lithium metal anode is notoriously unstable and reactive to electrolytes, forming brittle solid-electrolyte interphase (SEI) layers with uneven distribution, exacerbating Li dendrites that ultimately limit the battery life. Here, this work passivates Li metal with electrolyte-swellable polymer nanolayers deposited monolithically by the initiated chemical vapor deposition (iCVD) to reinforce the native SEI layers and stabilize their interface. The 100 nm iCVD poly(dimethylaminomethyl styrene) (pDMAMS) layer is swelled by 264% under a carbonate electrolyte, establishing the electrolyte-filled soft scaffold for Li-ion transport. Notably, the solvogel accommodates homogeneous Li2O-free and Li2CO3-rich native SEI layers, providing a record-high Li-ion transference number of 0.95 and ionic conductivity of 6.54 mS cm(-1). The developed pDMAMS-Li anodes extend the cycle life by 550% in Li-Li symmetric cells and 600% in LiNi0.6Mn0.2Co0.2O2 full cells compared to pristine Li metal. The mechanistic details of the swollen-soft-scaffold strategy are elucidated by depth profile analysis of the pDMAMS homopolymer compared to pDMAMS/electrolyte-phobic copolymers, providing new insights to manage the interface of liquid-state electrolyte and solid-state Li metal by using a novel class of bifunctional solvogel.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Insights into solid electrolyte interphase formation on alternative anode materials in lithium-ion batteries
    Steinhauer, Miriam
    Diemant, Thomas
    Heim, Christopher
    Behm, R. Juergen
    Wagner, Norbert
    Friedrich, K. Andreas
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2017, 47 (02) : 249 - 259
  • [22] Introducing Artificial Solid Electrolyte Interphase onto the Anode of Aqueous Lithium Energy Storage Systems
    Ahmed, Moin
    Yazdi, Alireza Zehtab
    Mitha, Aly
    Chen, P.
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (36) : 30348 - 30356
  • [23] Modification of Nitrate Ion Enables Stable Solid Electrolyte Interphase in Lithium Metal Batteries
    Hou, Li-Peng
    Yao, Nan
    Xie, Jin
    Shi, Peng
    Sun, Shu-Yu
    Jin, Cheng-Bin
    Chen, Cheng-Meng
    Liu, Quan-Bing
    Li, Bo-Quan
    Zhang, Xue-Qiang
    Zhang, Qiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (20)
  • [24] A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes
    Li, Nian-Wu
    Shi, Yang
    Yin, Ya-Xia
    Zeng, Xian-Xiang
    Li, Jin-Yi
    Li, Cong-Ju
    Wan, Li-Jun
    Wen, Rui
    Guo, Yu-Guo
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (06) : 1505 - 1509
  • [25] Fine-tuned molecular design toward a stable solid electrolyte interphase on a lithium metal anode from in silico simulation
    Ma, Bingyun
    Liu, Yue
    Sun, Qintao
    Yu, Peiping
    Xu, Liang
    Yang, Hao
    Xie, Miao
    Cheng, Tao
    MATERIALS TODAY CHEMISTRY, 2023, 33
  • [26] Formation and Breakdown of the Solid-electrolyte Interphase in a Bis (fluorosulfonyl) amide-based Ionic Liquid in the Presence of Lithium Ion
    Okazaki, Sho
    Serizawa, Nobuyuki
    Katayama, Yasushi
    ELECTROCHEMISTRY, 2024, 92 (04)
  • [27] Multiphysics modeling of lithium ion battery capacity fading process with solid-electrolyte interphase growth by elementary reaction kinetics
    Xie, Yuanyuan
    Li, Jianyang
    Yuan, Chris
    JOURNAL OF POWER SOURCES, 2014, 248 : 172 - 179
  • [28] Inorganic-Rich and Flexible Solid-Electrolyte Interphase Formed Over Dipole-Dipole Interaction for Highly Stable Lithium-Metal Anodes
    Zhu, Jinqi
    Cui, Zhe
    He, Shu-Ang
    Wang, Hao
    Gao, Mengluan
    Wang, Wenqing
    Yang, Jianmao
    Xu, Xintong
    Hu, Junqing
    Lu, Aijiang
    Zou, Rujia
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (44)
  • [29] Gradient Solid Electrolyte Interphase and Lithium-Ion Solvation Regulated by Bisfluoroacetamide for Stable Lithium Metal Batteries
    Li, Fang
    He, Jian
    Liu, Jiandong
    Wu, Mingguang
    Hou, Yuyang
    Wang, Huaping
    Qi, Shihan
    Liu, Quanhui
    Hu, Jiawen
    Ma, Jianmin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (12) : 6600 - 6608
  • [30] Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries
    Cheng, Xin-Bing
    Peng, Hong-Jie
    Huang, Jia-Qi
    Zhang, Rui
    Zhao, Chen-Zi
    Zhang, Qiang
    ACS NANO, 2015, 9 (06) : 6373 - 6382