Managing and optimizing urban water supply system for sustainable development: Perspectives from water-energy-carbon nexus

被引:11
|
作者
Tan, Shiqi [1 ]
Yao, Liming [1 ,2 ]
机构
[1] Sichuan Univ, Business Sch, Chengdu 610064, Peoples R China
[2] Sichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
Urban water supply system; Water-energy-carbon nexus; Sustainable development; Water consumption; Carbon emission mitigation; Scenario analysis; GREENHOUSE-GAS EMISSIONS; MULTIOBJECTIVE OPTIMIZATION; EQUILIBRIUM STRATEGY; CLIMATE-CHANGE; CITY; ALLOCATION; FRAMEWORK; TRADE;
D O I
10.1016/j.spc.2023.02.004
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Sustainable Development Goals call for a balanced and integrated manner to achieve sustainable develop-ment in dimensions of socio-economy and environment. Clarifying the nexus between water, energy, and carbon emission (WEC-Nexus) is vital for the city's sustainability. Urban water supply system (UWSS) plays a significant role in water supply and carbon mitigation. Therefore, a multi-objective optimization model was conducted for trade-offs among socio-economic and environmental benefits and applied to a proposed three-stage UWSS of Beijing. According to the sub-indicators of SDGs, we conceived five scenarios to predict the development of water scarcity and environmental impacts, carbon emissions, and economic costs. Using the system dynamics (SD) model, WEC-Nexus and economic performance under different scenarios were simulated. The results showed that the carbon emission was the highest in 2036 under an economically fast-growing scenario (3.47 x 1010 tCO2), and exceptionally-high water demand (4.68 x 109 m3) and poor pollution (8.98 x 109 mg) were produced. The most promising outcomes came from scenarios of technological advancement and ecological conservation. Energy intensity and the behavior of city dwellers led to significant disparities among emitters. We have also recommended constructive policies for Beijing to develop a low-carbon and sustainable ecosystem of UWSS. This study could provide references to measures for sustainable urban development, contributing to effi-cient water allocation and carbon reduction. (c) 2023 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:39 / 52
页数:14
相关论文
共 50 条
  • [1] Analysis of the water-energy-carbon nexus for sustainable development of the selected industries
    Naing, Pyae Mon
    Babel, Mukand S.
    Karthe, Daniel
    Stamm, Juergen
    SUSTAINABLE DEVELOPMENT, 2024, 32 (05) : 5836 - 5860
  • [2] Water-Energy-Carbon Nexus Modeling for Urban Water Systems: System Dynamics Approach
    Chhipi-Shrestha, Gyan
    Hewage, Kasun
    Sadiq, Rehan
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 2017, 143 (06)
  • [3] A sustainable network design of a hybrid biomass supply chain by considering the water-energy-carbon nexus
    Rasekh, Abolfazl
    Hamidzadeh, Farhad
    Sahebi, Hadi
    Pishvaee, Mir Saman
    ENERGY SCIENCE & ENGINEERING, 2023, 11 (03) : 1107 - 1132
  • [4] Optimization of the Water-Energy-Carbon Nexus in the Residential Water Uses of Shanghai, China
    Zhou, Jianyu
    Zhu, Tingju
    SUSTAINABILITY, 2024, 16 (09)
  • [5] Review of the water-energy-carbon nexus in small and medium drinking water systems: challenges and opportunities
    Barrios, Michelle Sofia Sarmiento
    Haider, Husnain
    Chhipi-Shrestha, Gyan Kumar
    Kaur, Manjot
    Hewage, Kasun
    Sadiq, Rehan
    ENVIRONMENTAL REVIEWS, 2024, 32 (04): : 658 - 687
  • [6] Upgrading the industrial structure for optimizing water-energy-carbon nexus in regional trade network
    Zhu, Benshuo
    Guo, Ru
    Tang, Yun-en
    Peng, Kaiming
    Huang, Xiangfeng
    JOURNAL OF CLEANER PRODUCTION, 2024, 469
  • [7] Water-energy-carbon nexus: a case study of Bangkok
    Shrestha, Sangam
    Parajuli, Kshitij
    Babel, Mukand S.
    Dhakal, Shobhakar
    Shinde, Victor
    WATER SCIENCE AND TECHNOLOGY-WATER SUPPLY, 2015, 15 (05): : 889 - 897
  • [8] Water-Energy-Carbon Nexus Analysis for Water Supply Systems with Brackish Groundwater Sources in Arid Regions
    Alresheedi, Mohammad T.
    Haider, Husnain
    Shafiquzzaman, Md.
    AlSaleem, Saleem S.
    Alinizzi, Majed
    SUSTAINABILITY, 2022, 14 (09)
  • [9] Water-energy-carbon nexus of China's Yellow River water allocation schemes
    Li, Jiawei
    Han, Jinxu
    Zuo, Qiting
    Guo, Mengjin
    Wang, Saige
    Yu, Lei
    ENERGY CONVERSION AND MANAGEMENT, 2025, 332
  • [10] Impact of urbanization on water-energy-carbon nexus system: The case of Zhengzhou, China
    Xie, Zhixiang
    Feng, Mengyu
    Zhao, Rongqin
    Xiao, Liangang
    Yao, Shuangsheng
    Ji, Jiayu
    Gao, Yaohui
    Rong, Peijun
    Chuai, Xiaowei
    Chen, Bin
    CITIES, 2024, 155