In vivo degradation of polyethylene terephthalate using microbial isolates from plastic polluted environment

被引:42
作者
Maheswaran, Baskaran [1 ]
Al-Ansari, Mysoon [2 ]
Al-Humaid, Latifah [2 ]
Raj, Joseph Sebastin [1 ]
Kim, Woong [3 ]
Karmegam, Natchimuthu [4 ]
Rafi, Kasim Mohamed [5 ]
机构
[1] Bharathidasan Univ, Jamal Mohamed Coll Autonomous, Post Grad & Res Dept Biotechnol, Tiruchirappalli 620020, Tamil Nadu, India
[2] King Saud Univ, Coll Sci, Dept Bot & Microbiol, Riyadh 11451, Saudi Arabia
[3] Kyungpook Natl Univ, Dept Environm Engn, Daegu 41566, South Korea
[4] Govt Arts Coll Autonomous, PG & Res Dept Bot, Salem 636007, Tamil Nadu, India
[5] Bharathidasan Univ, Jamal Mohamed Coll Autonomous, Post Grad & Res Dept Bot, Tiruchirappalli 620020, Tamil Nadu, India
关键词
Microplastics; Polyethylene terephthalate; Biodegradation; Biofilm; Microbial consortium; LOW-DENSITY POLYETHYLENE; PLATE-COUNT BACTERIA; MEDIATED BIODEGRADATION; BIOFILM FORMATION; LDPE; WATER; MICROPLASTICS; POLYPROPYLENE; STRAIN; FILMS;
D O I
10.1016/j.chemosphere.2022.136757
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accumulation of plastics alarms a risk to the environment worldwide. As polyethylene pterephthalate (PET) degrades slowly and produces hazardous substances, therefore, it is now essential to eliminate plastic wastes from the environment. Given that, the current study is concerned with PET degradation potential of naturally occurring microbial strains isolated from plastic waste dumping sites, Sarcina aurantiaca (TB3), Bacillus subtilis (TB8), Aspergillus flavus (STF1), Aspergillus niger (STF2). To test the biodegradability of PET films, the films were incubated for 60 days at 37 degrees C with the microorganisms designated as TB3, TB8, STF1, STF2 and the microbial consortium (TB3+TB8+STF1+STF2) in Minimal Salt Medium and Bushnell Hass Broth. Hydrophobicity, viability, and total protein content of isolates were investigated. Using Field Emission Scanning Electron Mi-croscopy and Fourier Transform Infrared Spectrophotometry to measure variations in functional groups and carbonyl index on PET surface, biodegradation process was affirmed by fissures and modified surfaces. Results revealed that the microbial consortium (S. aurantiaca + B. subtilis + A. flavus + A. niger) that the weight loss of PET films was 28.78%. The microbial consortium could be used to treat PET waste, posing no health or envi-ronmental risks. The developed microbial consortium has the potential to degrade PET, hence can be employed for eliminating PET in plastic contaminated sites.
引用
收藏
页数:11
相关论文
共 50 条
[41]   Thermophilic whole-cell degradation of polyethylene terephthalate using engineered Clostridium thermocellum [J].
Yan, Fei ;
Wei, Ren ;
Cui, Qiu ;
Bornscheuer, Uwe T. ;
Liu, Ya-Jun .
MICROBIAL BIOTECHNOLOGY, 2021, 14 (02) :374-385
[42]   Exploring microbial consortia from various environments for plastic degradation [J].
Cifuentes, Ingrid Eileen Meyer ;
Ozturk, Basak .
ENZYMATIC PLASTIC DEGRADATION, 2021, 648 :47-69
[43]   Effect of blend ratio on the dynamic mechanical and thermal degradation behavior of polymer-polymer composites from low density polyethylene and polyethylene terephthalate [J].
Jayanarayanan, Karingamanna ;
Thomas, Sabu ;
Joseph, Kuruvilla .
IRANIAN POLYMER JOURNAL, 2016, 25 (04) :373-384
[44]   Novel Feruloyl Esterase for the Degradation of Polyethylene Terephthalate (PET) Screened from the Gut Microbiome of Plastic-Degrading Mealworms (Tenebrio Molitor Larvae) [J].
Mamtimin, Tursunay ;
Ouyang, Xingyu ;
Wu, Wei-Min ;
Zhou, Tuoyu ;
Hou, Xiaoxiao ;
Khan, Aman ;
Liu, Pu ;
Zhao, Yi-Lei ;
Tang, Hongzhi ;
Criddle, Craig S. ;
Han, Huawen ;
Li, Xiangkai .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2024, 58 (40) :17717-17731
[45]   Prospects for recycling plastic waste based on polyethylene glycol terephthalate using living systems (a review) [J].
Belov, Denis, V ;
Belyaev, Sergey N. .
IZVESTIYA VUZOV-PRIKLADNAYA KHIMIYA I BIOTEKHNOLOGIYA, 2022, 12 (02) :238-253
[46]   Microbial colonization and degradation of polyethylene and biodegradable plastic bags in temperate fine-grained organic-rich marine sediments [J].
Nauendorf, Alice ;
Krause, Stefan ;
Bigalke, Nikolaus K. ;
Gorb, Elena V. ;
Gorb, Stanislav N. ;
Haeckel, Matthias ;
Wahl, Martin ;
Treude, Tina .
MARINE POLLUTION BULLETIN, 2016, 103 (1-2) :168-178
[47]   Unveiling the potential of bacterial isolates from plastic-polluted environments: enhancement of polyhydroxybutyrate biodegradation [J].
Diana A. Garza Herrera ;
Marija Mojicevic ;
Chaitra Venkatesh ;
E. Henrique Da Silva Pereira ;
Margaret Brennan-Fournet .
Biotechnology for the Environment, 1 (1)
[48]   Catalytic Degradation of Polyethylene Terephthalate Using a Phase-Transitional Zirconium-Based Metal-Organic Framework [J].
Wu, Yufang ;
Wang, Xingjie ;
Kirlikovali, Kent O. ;
Gong, Xinyi ;
Atilgan, Ahmet ;
Ma, Kaikai ;
Schweitzer, Neil M. ;
Gianneschi, Nathan C. ;
Li, Zhong ;
Zhang, Xuan ;
Farha, Omar K. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (24)
[49]   Accelerated degradation of low-density polyethylene by bacteria isolates: Insights from Surabaya River, Indonesia [J].
Widiyanti, Atik ;
Soedjono, Eddy Setiadi ;
Shovitri, Maya ;
Yuniarto, Adhi ;
Tamyiz, Muchammad .
JOURNAL OF ECOLOGICAL ENGINEERING, 2025, 26 (06) :179-188
[50]   Hydrolase and plastic-degrading microbiota explain degradation of polyethylene terephthalate microplastics during high-temperature composting [J].
Li, Xiaoxiao ;
Liu, Xinxin ;
Zhang, Junren ;
Chen, Fu ;
Khalid, Muhammad ;
Ye, Jieqi ;
Romantschuk, Martin ;
Hui, Nan .
BIORESOURCE TECHNOLOGY, 2024, 393