Proximal nested primal-dual gradient algorithms for distributed constraint-coupled composite optimization

被引:2
|
作者
Li, Jingwang [1 ]
An, Qing [2 ]
Su, Housheng [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Image Proc & Intelligent Control Key Lab, Educ Minist China, Luoyu Rd 1037, Wuhan 430074, Peoples R China
[2] Wuchang Univ Technol, Articial Intelligence Sch, Wuhan 430223, Peoples R China
基金
中国国家自然科学基金;
关键词
Constraint-coupled optimization; Non-smooth function; Proximal operator; Primal-dual gradient algorithm; RESOURCE-ALLOCATION; ECONOMIC-DISPATCH; CONVERGENCE;
D O I
10.1016/j.amc.2022.127801
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a class of distributed constraint-coupled optimization problems, where each local function is composed of a smooth and strongly convex function and a convex but possibly non-smooth function. We design a novel proximal nested primal-dual gradient algorithm (Prox-NPGA), which is a generalized version of the exiting algorithm- NPGA. The convergence of Prox-NPGA is proved and the upper bounds of the step-sizes are given. Finally, numerical experiments are employed to verify the theoretical results and compare the convergence rates of different versions of Prox-NPGA.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] DSCOVR: Randomized Primal-Dual Block Coordinate Algorithms for Asynchronous Distributed Optimization
    Xiao, Lin
    Yu, Adams Wei
    Lin, Qihang
    Chen, Weizhu
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [32] Primal-Dual Fixed Point Algorithms Based on Adapted Metric for Distributed Optimization
    Li, Huaqing
    Zheng, Zuqing
    Lu, Qingguo
    Wang, Zheng
    Gao, Lan
    Wu, Guo-Cheng
    Ji, Lianghao
    Wang, Huiwei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (06) : 2923 - 2937
  • [33] Distributed Primal-Dual Subgradient Method for Multiagent Optimization via Consensus Algorithms
    Yuan, Deming
    Xu, Shengyuan
    Zhao, Huanyu
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2011, 41 (06): : 1715 - 1724
  • [34] Primal-Dual ε-Subgradient Method for Distributed Optimization
    ZHU Kui
    TANG Yutao
    Journal of Systems Science & Complexity, 2023, 36 (02) : 577 - 590
  • [35] Input/Output Analysis of Primal-Dual Gradient Algorithms
    Simpson-Porco, John W.
    2016 54TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2016, : 219 - 224
  • [36] DSCOVR: Randomized primal-dual block coordinate algorithms for asynchronous distributed optimization
    Xiao, Lin
    Yu, Adams Wei
    Lin, Qihang
    Chen, Weizhu
    Journal of Machine Learning Research, 2019, 20
  • [37] Accelerated Primal-Dual Algorithms for Distributed Smooth Convex Optimization over Networks
    Xu, Jinming
    Tian, Ye
    Sun, Ying
    Scutari, Gesualdo
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108
  • [38] A nested primal-dual FISTA-like scheme for composite convex optimization problems
    Bonettini, S.
    Prato, M.
    Rebegoldi, S.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 84 (01) : 85 - 123
  • [39] A New Randomized Block-Coordinate Primal-Dual Proximal Algorithm for Distributed Optimization
    Latafat, Puya
    Freris, Nikolaos M.
    Patrinos, Panagiotis
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (10) : 4050 - 4065
  • [40] A Smooth Double Proximal Primal-Dual Algorithm for a Class of Distributed Nonsmooth Optimization Problems
    Wei, Yue
    Fang, Hao
    Zeng, Xianlin
    Chen, Jie
    Pardalos, Panos
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (04) : 1800 - 1806