The structure of metahamiltonian groups

被引:6
作者
Brescia, Mattia [2 ]
Ferrara, Maria [1 ]
Trombetti, Marco [2 ]
机构
[1] Univ Campania Luigi Vanvitelli, Dipartimento Matemat & Fis, Viale Lincoln 5, Caserta, Italy
[2] Univ Napoli Federico II, Dipartimento Matemat & Applicazioni Renato Caccio, Complesso Univ Monte S Angelo,Via Cintia, Naples, Italy
来源
JAPANESE JOURNAL OF MATHEMATICS | 2023年 / 18卷 / 01期
关键词
metahamiltonian group;
D O I
10.1007/s11537-023-2216-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A group is called metahamiltonian if all its non-abelian subgroups are normal. The aim of this paper is to provide an exhaustive but self-contained reference to the structure of metahamiltonian groups fixing several relevant mistakes appearing in the literature.
引用
收藏
页码:1 / 65
页数:65
相关论文
共 23 条
[1]  
Adler J., ARXIV
[2]   Finite metahamiltonian p-groups [J].
An, Lijian ;
Zhang, Qinhai .
JOURNAL OF ALGEBRA, 2015, 442 :23-35
[3]  
[Anonymous], 1988, UKRAINIAN MATH J, V40, P627, DOI [10.1007/BF01057181, DOI 10.1007/BF01057181]
[4]  
[Anonymous], 1986, SOVIET MATH IZ VUZ, V30, P42
[5]  
Berkovich Y, 2008, DEGRUYTER EXPOS MATH, V46, P1, DOI 10.1515/9783110208221
[6]  
Brescia M., KYOTO J MATH
[7]  
Brescia M., LOCALLY FINITE SIMPL
[8]  
De Falco M, 2013, INT J GROUP THEORY, V2, P117
[9]   COMMUTATORS AND COMMUTATOR SUBGROUPS [J].
GURALNICK, RM .
ADVANCES IN MATHEMATICS, 1982, 45 (03) :319-330
[10]  
Kuzenny N.F., 1987, UKRAINIAN MATH J, V39, P149