Biomass-Derived Hard Carbon and Nitrogen-Sulfur Co-Doped Graphene for High-Performance Symmetric Sodium Ion Capacitor Devices

被引:13
|
作者
Thirumal, Vediyappan [1 ]
Sreekanth, T. V. M. [1 ]
Yoo, Kisoo [1 ]
Kim, Jinho [1 ]
机构
[1] Yeungnam Univ, Dept Mech Engn, Gyongsan 38541, Gyeongbuk Do, South Korea
基金
新加坡国家研究基金会;
关键词
biomass; tamarind pod; hard carbon; heteroatom; graphene; Na-ion capacitor; NA-ION; SUPERCAPACITOR; BATTERY; GRAPHITE; STORAGE; ANODE; COMPOSITES; LITHIUM;
D O I
10.3390/en16020802
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
An inexpensive bio-mass-derived hard carbon from tamarind pods was used as an anode, and nitrogen and nitrogen (N)/sulfur (S) co-doped graphene were used as a cathode for novel hybrid Na-ion supercapacitors. The structural and surface morphological analyses are investigated using a range of techniques. The 3D network of the heteroatom-doped graphene skeleton edges for N and NS-doping conformations were assigned as N-RGOs (N1s-5.09 at.%) and NS-RGOs (N1s-7.66 at.% and S1s-2.22 at.%) based on energy dispersive X-ray spectroscopy elemental mapping. The negative electrode (T-HC) hard carbon was pre-treated by pre-sodiation with a half-cell process by galvanostatic charge-discharge in a sodium-ion battery at 0.01-2.5 V vs. Na/Na+. The T-HC//NS-RGO, T-HC//N-RGO, and T-HC//RGO were used to construct the Na-ion supercapacitor device. In the CV experiments, the electrochemical galvanostatic charge-discharge was studied at 1.0-4.2 V. The specific capacitance was 352.18 F/g for the T.HC/NS-RGO device and 180.93 F/g for the T.HC/N-RGO device; both were symmetric devices. T.HC/NS-RGO device performance revealed excellent cycling stability, with T-HC//NS-RGO showing 89.26% capacitance retention over 5000 cycles. A carbon-carbon symmetric device, such as a Na-ion hybrid capacitor, can exhibit the characteristics of both batteries and supercapacitors for future electric vehicles.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Biomass-derived nitrogen and oxygen co-doped hierarchical porous carbon for high performance symmetric supercapacitor
    Zhou, Yibei
    Ren, Juan
    Yang, Yang
    Zheng, Qiaoji
    Liao, Jie
    Xie, Fengyu
    Jie, Wenjing
    Lin, Dunmin
    JOURNAL OF SOLID STATE CHEMISTRY, 2018, 268 : 149 - 158
  • [2] A renewable natural cotton derived and nitrogen/sulfur co-doped carbon as a high-performance sodium ion battery anode
    Yang, Chenghao
    Xiong, Jiawen
    Ou, Xing
    Wu, Chun-Fu
    Xiong, Xunhui
    Wang, Jeng-Han
    Huang, Kevin
    Liu, Meilin
    MATERIALS TODAY ENERGY, 2018, 8 : 37 - 44
  • [3] High-performance nitrogen and sulfur co-doped nanotube-like carbon anodes for sodium ion hybrid capacitors
    Ding, Yongqiang
    Li, Yali
    Li, Junshuai
    Yan, Xingbin
    CHINESE CHEMICAL LETTERS, 2020, 31 (09) : 2219 - 2224
  • [4] Nitrogen and Sulfur Co-doped Mesoporous Carbon for Sodium Ion Batteries
    Song, Wenping
    Kan, Jinglin
    Wang, Huanlei
    Zhao, Xiaochen
    Zheng, Yulong
    Zhang, Hao
    Tao, Lin
    Huang, Minghua
    Liu, Wei
    Shi, Jing
    ACS APPLIED NANO MATERIALS, 2019, 2 (09): : 5643 - 5654
  • [5] Biomass-Derived Oxygen and Nitrogen Co-Doped Porous Carbon with Hierarchical Architecture as Sulfur Hosts for High-Performance Lithium/Sulfur Batteries
    Zhao, Yan
    Wang, Li
    Huang, Lanyan
    Maximov, Maxim Yu.
    Jin, Mingliang
    Zhang, Yongguang
    Wang, Xin
    Zhou, Guofu
    NANOMATERIALS, 2017, 7 (11):
  • [6] Pinecone biomass-derived hard carbon anodes for high-performance sodium-ion batteries
    Zhang, Tao
    Mao, Jing
    Liu, Xiaolin
    Xuan, Minjie
    Bi, Kai
    Zhang, Xiao Li
    Hu, Junhua
    Fan, Jiajie
    Chen, Shimou
    Shao, Guosheng
    RSC ADVANCES, 2017, 7 (66): : 41504 - 41511
  • [7] Nitrogen and sulfur co-doped hierarchically mesoporous carbon derived from biomass as high-performance anode materials for superior sodium storage
    He, Liuliu
    Sun, Wang
    Sun, Kening
    Mao, Yuqiong
    Deng, Tongtong
    Fang, Li
    Wang, Zhenhua
    Chen, Shilu
    JOURNAL OF POWER SOURCES, 2022, 526
  • [8] Close pore engineering for biomass-derived hard carbon toward high-performance sodium-ion batteries
    Ren, Chaojie
    He, Jie
    Xu, Hanyu
    Wang, Ji
    Li, Ke
    Hu, Kuncai
    Zhao, Liang
    Wang, Haibo
    Yang, Ruizhi
    ELECTROCHIMICA ACTA, 2025, 523
  • [9] Biomass-Derived Hard Carbon Materials for High-Performance Sodium-Ion Battery
    Chen, Yixing
    Cui, Jiaming
    Wang, Sheng
    Xu, Wentao
    Guo, Ruoqi
    COATINGS, 2025, 15 (02):
  • [10] Self-templated biomass-derived nitrogen-doped porous carbons as high-performance anodes for sodium ion batteries
    Guo, L.
    An, Y.
    Fei, H.
    Feng, J.
    Xiong, S.
    Ci, L.
    MATERIALS TECHNOLOGY, 2017, 32 (10) : 592 - 597