Nonlinear sliding mode controller using disturbance observer for permanent magnet synchronous motors under disturbance

被引:25
作者
Gil, Jeonghwan
You, Sesun [1 ,2 ]
Lee, Youngwoo [3 ]
Kim, Wonhee [4 ]
机构
[1] Korea Automot Technol Inst, Intelligent Transportat Syst R&D Dept, Automatic Driving Technol Res Lab, Cheonan 31214, South Korea
[2] Chung Ang Univ, Dept Energy Syst Engn, Seoul 06974, South Korea
[3] Chonnam Natl Univ, Dept Elect Engn, Gwangju 61186, South Korea
[4] Chung Ang Univ, Sch Energy Syst Engn, Seoul 06974, South Korea
基金
新加坡国家研究基金会;
关键词
Permanent magnet machines; Sliding mode control; Nonlinear control systems; SPEED CONTROL; DESIGN; SYSTEM;
D O I
10.1016/j.eswa.2022.119085
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a nonlinear sliding mode controller (NSMC) using disturbance observer (DOB) for permanent magnet synchronous motors (PMSMs) under disturbance. A nonlinear gain, which is a function of a sliding surface, is incorporated to improve the performance of the sliding mode controller (SMC). The chattering in the proposed controller is mathematically proven to be lower than that in a conventional sliding mode controller (CSMC). In the NSMC, the sliding surface exponentially converges to zero when the sliding surface is far from zero, and then reaches zero within a finite time, similar to the behavior of the CSMC near zero. The exponential convergence property ensures stability without disturbance information. The chattering performance under the unmodeled dynamics of the PMSM is mathematically analyzed using the describing function method. A DOB is used to compensate for disturbances, such as parameter uncertainties and load torque. The closed -loop stability under the perturbation term, which is caused by the disturbance estimation error, is guaranteed without disturbance information.
引用
收藏
页数:13
相关论文
共 35 条
[21]   Constrained Nonlinear Discrete-Time Sliding Mode Control Based on a Receding Horizon Approach [J].
Rubagotti, Matteo ;
Incremona, Gian Paolo ;
Raimondo, Davide M. ;
Ferrara, Antonella .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (08) :3802-3809
[22]  
Shin S, 2013, 2013 13TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2013), P767, DOI 10.1109/ICCAS.2013.6704016
[23]  
Shtessel Y., 2014, SLIDING MODE CONTROL, DOI [10.1007/978-0-8176-4893-0, DOI 10.1007/978-0-8176-4893-0]
[24]   A newly robust controller design for the position control of permanent-magnet synchronous motor [J].
Shyu, KK ;
Lai, CK ;
Tsai, YW ;
Yang, DI .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2002, 49 (03) :558-565
[25]   On the Control of the Permanent Magnet Synchronous Motor: An Active Disturbance Rejection Control Approach [J].
Sira-Ramirez, Hebertt ;
Linares-Flores, Jesus ;
Garcia-Rodriguez, Carlos ;
Antonio Contreras-Ordaz, Marco .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2014, 22 (05) :2056-2063
[26]  
Swikir A, 2016, IEEE INT WORK VAR, P98, DOI 10.1109/VSS.2016.7506898
[27]   Integral Sliding Mode-Based Model Predictive Current Control With Low Computational Amount for Three-Level Neutral-Point-Clamped Inverter-Fed PMSM Drives [J].
Teng, Qingfang ;
Xu, Ruiqi ;
Han, Xiao .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2020, 35 (04) :2249-2260
[28]  
Utkin V.I., 1992, SLIDING MODES CONTRO, V116
[29]   Non-cascade backstepping sliding mode control with three-order extended state observer for PMSM drive [J].
Wang, Yao ;
Yu, Hai Tao ;
Feng, Ning Jun ;
Wang, Yu Chen .
IET POWER ELECTRONICS, 2020, 13 (02) :307-316
[30]   A Rotor Flux Observer of Permanent Magnet Synchronous Motors With Adaptive Flux Compensation [J].
Wu, Chao ;
Sun, Xiangdong ;
Wang, Jianyuan .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2019, 34 (04) :2106-2117