Nonlinear sliding mode controller using disturbance observer for permanent magnet synchronous motors under disturbance

被引:18
作者
Gil, Jeonghwan
You, Sesun [1 ,2 ]
Lee, Youngwoo [3 ]
Kim, Wonhee [4 ]
机构
[1] Korea Automot Technol Inst, Intelligent Transportat Syst R&D Dept, Automatic Driving Technol Res Lab, Cheonan 31214, South Korea
[2] Chung Ang Univ, Dept Energy Syst Engn, Seoul 06974, South Korea
[3] Chonnam Natl Univ, Dept Elect Engn, Gwangju 61186, South Korea
[4] Chung Ang Univ, Sch Energy Syst Engn, Seoul 06974, South Korea
基金
新加坡国家研究基金会;
关键词
Permanent magnet machines; Sliding mode control; Nonlinear control systems; SPEED CONTROL; DESIGN; SYSTEM;
D O I
10.1016/j.eswa.2022.119085
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a nonlinear sliding mode controller (NSMC) using disturbance observer (DOB) for permanent magnet synchronous motors (PMSMs) under disturbance. A nonlinear gain, which is a function of a sliding surface, is incorporated to improve the performance of the sliding mode controller (SMC). The chattering in the proposed controller is mathematically proven to be lower than that in a conventional sliding mode controller (CSMC). In the NSMC, the sliding surface exponentially converges to zero when the sliding surface is far from zero, and then reaches zero within a finite time, similar to the behavior of the CSMC near zero. The exponential convergence property ensures stability without disturbance information. The chattering performance under the unmodeled dynamics of the PMSM is mathematically analyzed using the describing function method. A DOB is used to compensate for disturbances, such as parameter uncertainties and load torque. The closed -loop stability under the perturbation term, which is caused by the disturbance estimation error, is guaranteed without disturbance information.
引用
收藏
页数:13
相关论文
共 35 条
  • [1] Explicit Generalized Predictive Control of Speed and Position of PMSM Drives
    Belda, Kvetoslav
    Vosmik, David
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (06) : 3889 - 3896
  • [2] Castillo L., 2020, CONTROL ENG PRACT, V95, P1
  • [3] Chiasson J., 2005, IEEE PR SER POWER
  • [4] Precise position control using a PMSM with a disturbance observer containing a system parameter compensator
    Choi, SH
    Ko, JS
    Kim, ID
    Park, JS
    Hong, SC
    [J]. IEE PROCEEDINGS-ELECTRIC POWER APPLICATIONS, 2005, 152 (06): : 1573 - 1577
  • [5] Disturbance-Observer-Based Terminal Sliding Mode Control for Linear Traction System With Prescribed Performance
    Ding, Bo
    Xu, Dezhi
    Jiang, Bin
    Shi, Peng
    Yang, Weilin
    [J]. IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2021, 7 (02) : 649 - 658
  • [6] Gou L., 2022, IEEE T TRANSP ELECTR, DOI [10.1109/TIE.2021.3093069, DOI 10.1109/TIE.2021.3093069]
  • [7] PMSM Servo Control System Design Based on Fuzzy PID
    Guo Qiang
    Han Junfeng
    Peng Wei
    [J]. 2017 2ND INTERNATIONAL CONFERENCE ON CYBERNETICS, ROBOTICS AND CONTROL (CRC 2017), 2017, : 85 - 88
  • [8] A General Framework for Switched and Variable Gain Higher Order Sliding Mode Control
    Incremona, Gian Paolo
    Rubagotti, Matteo
    Tanelli, Mara
    Ferrara, Antonella
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (04) : 1718 - 1724
  • [9] Fuzzy Model Predictive Direct Torque Control of IPMSMs for Electric Vehicle Applications
    Justo, Jackson John
    Mwasilu, Francis
    Kim, Eun-Kyung
    Kim, Jinuk
    Choi, Han Ho
    Jung, Jin-Woo
    [J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2017, 22 (04) : 1542 - 1553
  • [10] Time Delay Estimation Based Discrete-Time Super-Twisting Current Control for a Six-Phase Induction Motor
    Kali, Yassine
    Ayala, Magno
    Rodas, Jorge
    Saad, Maarouf
    Doval-Gandoy, Jesus
    Gregor, Raul
    Benjelloun, Khalid
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2020, 35 (11) : 12570 - 12580