Wobbling kinks in a two-component scalar field theory: Interaction between shape modes

被引:13
作者
Alonso-Izquierdo, A. [1 ,2 ]
Miguelez-Caballero, D. [3 ,4 ]
Nieto, L. M. [3 ,4 ]
Queiroga-Nunes, J. [1 ,2 ]
机构
[1] Univ Salamanca, Dept Matemat Aplicada, Casas Parque 2, Salamanca 37008, Spain
[2] Univ Salamanca, IUFFyM, Plaza Merced 1, Salamanca 37008, Spain
[3] Univ Valladolid, Dept Fis Teor Atom & Opt, Valladolid 47011, Spain
[4] Univ Valladolid, IMUVA, Valladolid 47011, Spain
关键词
Topological solitons; Wobbling kinks; Two -component scalar field theory; Perturbation theory; Radiation emission; SINE-GORDON KINKS; ANTIKINK INTERACTIONS; PHASE-SPACE; SOLITONS; SCATTERING; RESONANCE; DEFECTS; PHI-4; COLLISIONS; STABILITY;
D O I
10.1016/j.physd.2022.133590
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the interaction between the shape modes of the wobbling kinks arising in the family of two-component MSTB scalar field theory models is studied. The spectrum of the second order small kink fluctuation in this model has two localized vibrational modes associated to longitudinal and orthogonal fluctuations with respect to the kink orbit. It has been found that the excitation of the orthogonal shape mode immediately triggers the longitudinal one. In the first component channel the kink emits radiation with twice the orthogonal wobbling frequency (not the longitudinal one as happens in the 04-model). The radiation emitted in the second component has two dominant frequencies: one is three times the frequency of the orthogonal wobbling mode and the other is the sum of the frequencies of the longitudinal and orthogonal vibration modes. This feature is explained analytically using perturbation expansion theories.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 90 条
  • [71] Resonant interaction of φ4 kink with PT-symmetric perturbation with spatially periodic gain/loss coefficient
    Saadatmand, Danial
    Borisov, Denis I.
    Kevrekidis, Panayotis G.
    Zhou, Kun
    Dmitriev, Sergey V.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 56 : 62 - 76
  • [72] Kink scattering from a parity-time-symmetric defect in the φ4 model
    Saadatmanda, Danial
    Dmitriev, Sergey V.
    Borisov, Denis I.
    Kevrekidis, Panayotis G.
    Fatykhov, Minnekhan A.
    Javidan, Kurosh
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 29 (1-3) : 267 - 282
  • [73] SOLITARY-WAVE SOLUTION FOR A COMPLEX ONE-DIMENSIONAL FIELD
    SARKER, S
    TRULLINGER, SE
    BISHOP, AR
    [J]. PHYSICS LETTERS A, 1976, 59 (04) : 255 - 258
  • [74] Schneider T., 2004, ADV TEXTS PHYS, P9
  • [75] WOBBLING KINKS IN PHI-4 AND SINE-GORDON THEORY
    SEGUR, H
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (06) : 1439 - 1443
  • [76] INTERACTION BETWEEN SOLITON PAIRS IN A DOUBLE SINE-GORDON EQUATION
    SHIEFMAN, J
    KUMAR, P
    [J]. PHYSICA SCRIPTA, 1979, 20 (3-4): : 435 - 439
  • [77] Shnir YM, 2018, CAM M MATH, P1, DOI 10.1017/9781108555623
  • [78] Suppression of two-bounce windows in kink-antikink collisions
    Simas, F. C.
    Gomes, Adalto R.
    Nobrega, K. Z.
    Oliveira, J. C. R. E.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (09):
  • [79] Simas FC, 2023, Arxiv, DOI arXiv:2201.03372
  • [80] Solitary oscillations and multiple antikink-kink pairs in the double sine-Gordon model
    Simas, Fabiano C.
    Lima, Fred C.
    Nobrega, K. Z.
    Gomes, Adalto R.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (12)