Optimal Control, Contact Dynamics and Herglotz Variational Problem

被引:10
作者
de Leon, Manuel [1 ,2 ]
Lainz, Manuel [1 ]
Munoz-Lecanda, Miguel C. [3 ]
机构
[1] Inst Ciencias Matemat CSIC UAM UC3M UCM, Madrid, Spain
[2] Real Acad Ciencias Exactas Fis & Nat, Madrid, Spain
[3] Univ Politecn Cataluna, Dept Math, Barcelona, Spain
关键词
Contact Hamioltonian systems; Optimal control; Herglotz principle; Presymplectic systems; Pontryagin maximum principle; MECHANICAL SYSTEMS; CONSTRAINTS; SYMMETRIES;
D O I
10.1007/s00332-022-09861-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we combine two main topics in mechanics and optimal control theory: contact Hamiltonian systems and Pontryagin maximum principle. As an important result, among others, we develop a contact Pontryagin maximum principle that permits to deal with optimal control problems with dissipation. We also consider the Herglotz optimal control problem, which is simultaneously a generalization of the Herglotz variational principle and an optimal control problem. An application to the study of a thermodynamic system is provided.
引用
收藏
页数:46
相关论文
共 50 条
  • [41] Approximation of an optimal control problem in coefficient for variational inequality with anisotropic p-Laplacian
    Olha P. Kupenko
    Rosanna Manzo
    Nonlinear Differential Equations and Applications NoDEA, 2016, 23
  • [42] On an optimal control problem for a nonlinear system
    Surkov, P. G.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (04): : 241 - 249
  • [43] On an Optimal Control Problem with Discontinuous Integrand
    Aseev, S. M.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 304 (Suppl 1) : S3 - S13
  • [44] On an Optimal Control Problem with Discontinuous Integrand
    S. M. Aseev
    Proceedings of the Steklov Institute of Mathematics, 2019, 304 : S3 - S13
  • [45] On an optimal control problem with discontinuous integrand
    Aseev, Sergey Mironovich
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2018, 24 (01): : 15 - 26
  • [46] OPTIMAL CONTROL OF A QUASISTATIC FRICTIONAL CONTACT PROBLEM WITH HISTORY-DEPENDENT OPERATORS
    LI, Yujie
    Cheng, Xiaoliang
    Wang, Xilu
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2023, 20 (01) : 29 - 46
  • [47] Optimal control of a two-dimensional contact problem with multiple unilateral constraints
    Ma, Cheng-Cheng
    Wang, Yang-Yang
    Sun, Bing
    APPLICABLE ANALYSIS, 2023, 102 (18) : 5195 - 5214
  • [48] Optimal Control of the Obstacle Inclination Angle in the Contact Problem for a Kirchhoff–Love Plate
    N. P. Lazarev
    G. M. Semenova
    E. D. Fedotov
    Lobachevskii Journal of Mathematics, 2024, 45 (11) : 5383 - 5390
  • [49] Optimal control of elliptic variational inequalities
    Ito, K
    Kunisch, K
    APPLIED MATHEMATICS AND OPTIMIZATION, 2000, 41 (03) : 343 - 364
  • [50] Optimal Control of Stochastic Variational Inequalities
    Grecksch, Wilfried
    Khan, Akhtar A.
    Sama, Miguel
    Tammer, Christiane
    MINIMAX THEORY AND ITS APPLICATIONS, 2024, 9 (01): : 117 - 128