Foreformer: an enhanced transformer-based framework for multivariate time series forecasting

被引:14
|
作者
Yang, Ye [1 ]
Lu, Jiangang [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
[2] Zhejiang Lab, Hangzhou 311121, Peoples R China
关键词
Multivariate time series forecasting; Attention mechanism; Deep learning; Multi-resolution; Static covariate; Transformer; CONVOLUTIONAL NETWORKS;
D O I
10.1007/s10489-022-04100-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multivariate time series forecasting (MTSF) has been extensively studied throughout years with ubiquitous applications in finance, traffic, environment, etc. Recent investigations have demonstrated the potential of Transformer to improve the forecasting performance. Transformer, however, has limitations that prohibit it from being directly applied to MTSF, such as insufficient extraction of temporal patterns at different time scales, extraction of irrelevant information in the self-attention, and no targeted processing of static covariates. Motivated by above, an enhanced Transformer-based framework for MTSF is proposed, named Foreformer, with three distinctive characteristics: (i) a multi-temporal resolution module that deeply captures temporal patterns at different scales, (ii) an explicit sparse attention mechanism forces model to prioritize the most contributive components, and (iii) a static covariates processing module for nonlinear processing of static covariates. Extensive experiments on three real-world datasets demonstrate that Foreformer outperforms existing methodologies, making it a reliable approach for MTSF tasks.
引用
收藏
页码:12521 / 12540
页数:20
相关论文
共 50 条
  • [31] TVC Former: A transformer-based long-term multivariate time series forecasting method using time-variable coupling correlation graph
    Liu, Zhenyu
    Feng, Yuan
    Liu, Hui
    Tang, Ruining
    Yang, Bo
    Zhang, Donghao
    Jia, Weiqiang
    Tan, Jianrong
    KNOWLEDGE-BASED SYSTEMS, 2025, 314
  • [32] A Joint Time-Frequency Domain Transformer for multivariate time series forecasting
    Chen, Yushu
    Liu, Shengzhuo
    Yang, Jinzhe
    Jing, Hao
    Zhao, Wenlai
    Yang, Guangwen
    NEURAL NETWORKS, 2024, 176
  • [33] Multi-scale convolution enhanced transformer for multivariate long-term time series forecasting
    Li, Ao
    Li, Ying
    Xu, Yunyang
    Li, Xuemei
    Zhang, Caiming
    NEURAL NETWORKS, 2024, 180
  • [34] GRAformer: A gated residual attention transformer for multivariate time series forecasting
    Yang, Chengcao
    Wang, Yutian
    Yang, Bing
    Chen, Jun
    NEUROCOMPUTING, 2024, 581
  • [35] Time Series Forecasting Based on Convolution Transformer
    Wang, Na
    Zhao, Xianglian
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2023, E106D (05) : 976 - 985
  • [36] AGCNT: Adaptive Graph Convolutional Network for Transformer-based Long Sequence Time-Series Forecasting
    Su, Hongyang
    Wang, Xiaolong
    Qin, Yang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3439 - 3442
  • [37] A Novel Hybrid Transformer-Based Framework for Solar Irradiance Forecasting Under Incomplete Data Scenarios
    Zhang, Hanjin
    Li, Bin
    Su, Shun-Feng
    Yang, Wankou
    Xie, Liping
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (06) : 8605 - 8615
  • [38] A transformer-based adversarial network framework for steganography
    Xiao, Chaoen
    Peng, Sirui
    Zhang, Lei
    Wang, Jianxin
    Ding, Ding
    Zhang, Jianyi
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 269
  • [39] A Transformer-Based Framework for Scene Text Recognition
    Selvam, Prabu
    Koilraj, Joseph Abraham Sundar
    Tavera Romero, Carlos Andres
    Alharbi, Meshal
    Mehbodniya, Abolfazl
    Webber, Julian L.
    Sengan, Sudhakar
    IEEE ACCESS, 2022, 10 : 100895 - 100910
  • [40] Transformer-Based Time-Series Forecasting for Telemetry Data in an Environmental Control and Life Support System of Spacecraft
    Song, Bin
    Guo, Boyu
    Hu, Wei
    Zhang, Zhen
    Zhang, Nan
    Bao, Junpeng
    Wang, Jianji
    Xin, Jingmin
    ELECTRONICS, 2025, 14 (03):