Superior energy storage performance in antiferroelectric multilayer ceramics via heterogeneous interface structure engineering

被引:10
|
作者
Yang, Ying [1 ,2 ]
Dou, Zhanming [1 ,2 ,3 ]
Zou, Kailun [1 ,2 ]
Dong, Wen [1 ,2 ]
Luo, Wei [1 ,2 ]
Fu, Qiuyun [1 ,2 ]
Zhang, Guangzu [1 ,2 ]
Jiang, Shenglin [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Engn Res Ctr Funct Ceram MOE, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
[3] China Zhenhua Grp Yunke Electmn Co Ltd, Guiyang 550018, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrical energy storage; Antiferroelectric ceramics; Layered structures; Interfacial polarization effect; Interfacial blocking effect; BREAKDOWN STRENGTH; DIELECTRIC-PROPERTIES; PHASE-TRANSITION; THIN-FILMS; DENSITY; TEMPERATURE; COMPOSITE; ZIRCONATE; (PB;
D O I
10.1016/j.cej.2022.138636
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Dielectric ceramics are desired for pulse power electronic systems owing to their high power density. However, there are obstacles in the simultaneous enhancement of energy density (W-rec) and energy efficiency (eta). The two crucial parameters affecting the energy storage performance are polarization (P) and electric breakdown strength (E-b). Although considerable efforts have been made, the contradiction between high P and high E-b is still a challenging problem. In this work, the macroscopic properties and microstructure of (Pb0.9Ba0.04La0.04) (Zr0.65Sn0.3Ti0.05)O-3 (PBLZST) / (Pb0.95Ca0.02La0.02)(Zr0.93Sn0.05Ti0.02)O-3 (PCLZST) antiferroelectric multilayer ceramics prepared by a tape-casting method are combined to realize the synergic optimization of P and E-b. The huge difference in dielectric constants (epsilon(r)) of these two materials leads to the interfacial polarization effect and interfacial blocking effect. Despite their different electric characteristics, they have similar elemental composi-tions, matching lattice structures and compatible sintering processability, forming dense interface bonding. Ultimately, the structured ceramics achieve a high W-rec of 9.4 J cm(-3) and a high n of 86.5 % at 278 kV cm(-1), as well as favorable temperature stability, frequency stability and anti-fatigue property. The structure design combined with interfacial effects in this study provides a new strategy for the preparation of multilayer ceramics with superior energy storage performance.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] High Energy Storage Performance of PZO/PTO Multilayers via Interface Engineering
    Zhang, Yuanyuan
    Chen, Qianqian
    Qi, Ruijuan
    Shen, Hao
    Sui, Fengrui
    Yang, Jing
    Bai, Wei
    Tang, Xiaodong
    Chen, Xuefeng
    Fu, Zhengqian
    Wang, Genshui
    Zhang, Shujun
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (05) : 7157 - 7164
  • [32] Superior energy storage density and efficiency in antiferroelectric-like BNT-based ceramics via single-element phase engineering
    He, Shuang
    Lou, Kunjie
    Han, Bing
    Guo, Shaobo
    Cao, Fei
    Yao, Chunhua
    Bao, Yizheng
    Wang, Genshui
    JOURNAL OF ADVANCED CERAMICS, 2025, 14 (04):
  • [33] Outstanding Energy Storage Performance of NBT-Based Ceramics under Moderate Electric Field Achieved via Antiferroelectric Engineering
    Cao, Wenjun
    Li, Li
    Zhao, Hanyu
    Wang, Changyuan
    Liang, Cen
    Li, Feng
    Huang, Xuechen
    Wang, Chunchang
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (32) : 38633 - 38643
  • [34] Enhanced the energy storage performance in AgNbO3-based antiferroelectric ceramics via manipulation of oxygen vacancy
    Zhou, Jian
    Du, Jinhua
    Chen, Liming
    Li, Yong
    Xu, Lizhi
    Zhao, Qiran
    Yang, Huilin
    Ding, Jianxiang
    Sun, Zhengming
    Hao, Xihong
    Wang, Xuefeng
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (14) : 6059 - 6068
  • [35] Superior energy storage performance in Pb0.97La0.02(Zr0.50 Sn0.43Ti0.07)O3 antiferroelectric ceramics
    Xu, Haojie
    Dan, Yu
    Zou, Kailun
    Chen, Guang
    Zhang, Qingfeng
    Lu, Yinmei
    He, Yunbin
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2019, 8 (03): : 3291 - 3296
  • [36] Electric field tunable thermal stability of energy storage properties of PLZST antiferroelectric ceramics
    Liu, Zhen
    Dong, Xianlin
    Liu, Yun
    Cao, Fei
    Wang, Genshui
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2017, 100 (06) : 2382 - 2386
  • [37] Ultrahigh energy storage density in lead-free relaxor antiferroelectric ceramics via domain engineering
    Jiang, Jie
    Meng, Xiangjun
    Li, Ling
    Guo, Shun
    Huang, Ming
    Zhang, Ji
    Wang, Jing
    Hao, Xihong
    Zhu, Heguo
    Zhang, Shan-Tao
    ENERGY STORAGE MATERIALS, 2021, 43 : 383 - 390
  • [38] ACHIEVING SUPERIOR ENERGY STORAGE PERFORMANCE IN BARIUM TITANATE CERAMICS VIA A RARE EARTH CO-DOPING STRATEGY
    Alkathy, Mahmoud. S.
    Kassim, H. A.
    Gatasheh, Mansour K.
    Goud, J. Pundareekam
    Eiras, Jose A.
    CERAMICS-SILIKATY, 2024, 68 (04) : 505 - 515
  • [39] Ultrahigh energy storage performance of a polymer-based nanocomposite via interface engineering
    Wang, Peng
    Pan, Zhongbin
    Wang, Weilin
    Hu, Jianxu
    Liu, Jinjun
    Yu, Jinhong
    Zhai, Jiwei
    Chi, Qingguo
    Shen, Zhonghui
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (06) : 3530 - 3539
  • [40] Excellent energy storage performance of NaNbO3-based antiferroelectric ceramics with ultrafast charge/discharge rate
    Jiang, Ying
    Zhu, Chaoqiong
    Zhao, Peiyao
    Bi, Ke
    Liu, Jiaming
    Guo, Limin
    Wang, Xiaohui
    Li, Longtu
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (13) : 6465 - 6473